Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells Dev ; : 203922, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38688358

RESUMEN

A vasculature network supplies blood to feather buds in the developing skin. Does the vasculature network during early skin development form by sequential sprouting from the central vasculature or does local vasculogenesis occur first that then connect with the central vascular tree? Using transgenic Japanese quail Tg(TIE1p.H2B-eYFP), we observe that vascular progenitor cells appear after feather primordia formation. The vasculature then radiates out from each bud and connects with primordial vessels from neighboring buds. Later they connect with the central vasculature. Epithelial-mesenchymal recombination shows local vasculature is patterned by the epithelium, which expresses FGF2 and VEGF. Perturbing noggin expression leads to abnormal vascularization. To study endothelial origin, we compare transcriptomes of TIE1p.H2B-eYFP+ cells collected from the skin and aorta. Endothelial cells from the skin more closely resemble skin dermal cells than those from the aorta. The results show developing chicken skin vasculature is assembled by (1) physiological vasculogenesis from the peripheral tissue, and (2) subsequently connects with the central vasculature. The work implies mesenchymal plasticity and convergent differentiation play significant roles in development, and such processes may be re-activated during adult regeneration. SUMMARY STATEMENT: We show the vasculature network in the chicken skin is assembled using existing feather buds as the template, and endothelia are derived from local bud dermis and central vasculature.

2.
J Vis Exp ; (199)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37782100

RESUMEN

The developing avian skin during embryogenesis is a unique model that can provide valuable insights into tissue patterning. Here three variations on skin explant cultures to examine different aspects of skin development are described. First, ex vivo organ cultures and manipulations offer researchers opportunities to observe and study the development of feather buds directly. Skin explant culture can grow for 7 days enabling direct analysis of cellular behavior and 4D imaging at intervals during this growth period. This also allows for physical and molecular manipulations of culture conditions to visualize tissue response. For example, growth factor-coated beads can be applied locally to induce changes in feather patterning in a limited area. Alternatively, viral transduction can be delivered globally in the culture media to up or downregulate gene expression. Second, the skin recombination protocol allows researchers to investigate tissue interactions between the epidermis and mesenchyme that are derived from different skin regions, different life stages, or different species. This affords an opportunity to test the time window in which the epithelium is competent to respond to signals and its ability to form different skin appendages in response to signals from different mesenchymal sources. Third, skin reconstitution using dissociated dermal cells overlaid with intact epithelium resets skin development and enables the study of the initial processes of periodic patterning. This approach also enhances our ability to manipulate gene expression among the dissociated cells before creating the reconstituted skin explant. This paper provides the three culture protocols and exemplary experiments to demonstrate their utility.


Asunto(s)
Plumas , Piel , Animales , Epitelio/metabolismo , Organogénesis
3.
Front Physiol ; 13: 893736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634159

RESUMEN

The avian egg is a closed system that protects the growing embryo from external factors but prevents direct observation of embryo development. Various culture systems exist in the literature to study the development of the embryo for short periods of incubation (from 12 h up to a maximum of 60 h of egg incubation). A common flaw to these culture techniques is the inability to culture the unincubated avian blastoderm with intact tissue tensions on its native yolk. The goal of this work is to create a unique novel egg-in-cube system that can be used for long-term quail embryo culture initiated from its unincubated blastoderm stage. The egg-in-cube acts as an artificial transparent eggshell system that holds the growing embryo, making it amenable to microscopy. With the egg-in-cube system, quail embryos can be grown up to 9 days from the unincubated blastoderm (incubated in air, 20.9% O2), which improves to 15 days on switching to a hyperoxic environment of 60% O2. Using transgenic fluorescent quail embryos in the egg-in-cube system, cell movements in the unincubated blastoderm are imaged dynamically using inverted confocal microscopy, which has been challenging to achieve with other culture systems. Apart from these observations, several other imaging applications of the system are described in this work using transgenic fluorescent quail embryos with upright confocal or epifluorescence microscopy. To demonstrate the usefulness of the egg-in-cube system in perturbation experiments, the quail neural tube is electroporated with fluorescent mRNA "in cubo", followed by the incubation of the electroporated embryo and microscopy of the electroporated region with the embryo in the cube. The egg-in-cube culture system in combination with the "in cubo" electroporation and dynamic imaging capabilities described here will enable researchers to investigate several fundamental questions in early embryogenesis with the avian (quail) embryo on its native yolk.

4.
J Cardiovasc Dev Dis ; 7(1)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156044

RESUMEN

Avian embryos have been used for centuries to study development due to the ease of access. Because the embryos are sheltered inside the eggshell, a small window in the shell is ideal for visualizing the embryos and performing different interventions. The window can then be covered, and the embryo returned to the incubator for the desired amount of time, and observed during further development. Up to about 4 days of chicken development (out of 21 days of incubation), when the egg is opened the embryo is on top of the yolk, and its heart is on top of its body. This allows easy imaging of heart formation and heart development using non-invasive techniques, including regular optical microscopy. After day 4, the embryo starts sinking into the yolk, but still imaging technologies, such as ultrasound, can tomographically image the embryo and its heart in vivo. Importantly, because like the human heart the avian heart develops into a four-chambered heart with valves, heart malformations and pathologies that human babies suffer can be replicated in avian embryos, allowing a unique developmental window into human congenital heart disease. Here, we review avian heart formation and provide comparisons to the mammalian heart.

5.
BMC Biol ; 18(1): 14, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050986

RESUMEN

BACKGROUND: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.


Asunto(s)
Coturnix/genética , Genoma , Rasgos de la Historia de Vida , Enfermedades de las Aves de Corral/genética , Conducta Social , Animales , Estaciones del Año
6.
J Vis Exp ; (148)2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31233018

RESUMEN

We report that mRNA electroporation permits fluorescent proteins to label cells in living quail embryos more quickly and broadly than DNA electroporation. The high transfection efficiency permits at least 4 distinct mRNAs to be co-transfected with ~87% efficiency. Most of the electroporated mRNAs are degraded during the first 2 h post-electroporation, permitting time-sensitive experiments to be carried out in the developing embryo. Finally, we describe how to dynamically image live embryos electroporated with mRNAs that encode various subcellular targeted fluorescent proteins.


Asunto(s)
Electroporación/métodos , Embrión no Mamífero/metabolismo , Proteínas Luminiscentes/genética , Codorniz/embriología , Animales , Expresión Génica , ARN Mensajero/genética , Factores de Tiempo , Transfección
7.
Front Cell Dev Biol ; 7: 35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984757

RESUMEN

During early avian development, primordial germ cells (PGC) are highly migratory, moving from the central area pellucida of the blastoderm to the anterior extra-embryonic germinal crescent. The PGCs soon move into the forming blood vessels by intravasation and travel in the circulatory system to the genital ridges where they participate in the organogenesis of the gonads. This complex cellular migration takes place in close association with a nascent extracellular matrix that matures in a precise spatio-temporal pattern. We first compiled a list of quail matrisome genes by bioinformatic screening of human matrisome orthologs. Next, we used single cell RNA-seq analysis (scRNAseq) to determine that PGCs express numerous ECM and ECM-associated genes in early embryos. The expression of select ECM transcripts and proteins in PGCs were verified by fluorescent in situ hybridization (FISH) and immunofluorescence (IF). Live imaging of transgenic quail embryos injected with fluorescent antibodies against fibronectin and laminin, showed that germinal crescent PGCs display rapid shape changes and morphological properties such as blebbing and filopodia while surrounded by, or in close contact with, an ECM fibril meshwork that is itself in constant motion. Injection of anti-ß1 integrin CSAT antibodies resulted in a reduction of mature fibronectin and laminin fibril meshwork in the germinal crescent at HH4-5 but did not alter the active motility of the PGCs or their ability to populate the germinal crescent. These results suggest that integrin ß1 receptors are important, but not required, for PGCs to successfully migrate during embryonic development, but instead play a vital role in ECM fibrillogenesis and assembly.

8.
Development ; 144(23): 4462-4472, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835474

RESUMEN

Embryonic axis elongation is a complex multi-tissue morphogenetic process responsible for the formation of the posterior part of the amniote body. How movements and growth are coordinated between the different posterior tissues (e.g. neural tube, axial and paraxial mesoderm, lateral plate, ectoderm, endoderm) to drive axis morphogenesis remain largely unknown. Here, we use quail embryos to quantify cell behavior and tissue movements during elongation. We quantify the tissue-specific contribution to axis elongation using 3D volumetric techniques, then quantify tissue-specific parameters such as cell density and proliferation. To study cell behavior at a multi-tissue scale, we used high-resolution 4D imaging of transgenic quail embryos expressing fluorescent proteins. We developed specific tracking and image analysis techniques to analyze cell motion and compute tissue deformations in 4D. This analysis reveals extensive sliding between tissues during axis extension. Further quantification of tissue tectonics showed patterns of rotations, contractions and expansions, which are consistent with the multi-tissue behavior observed previously. Our approach defines a quantitative and multi-scale method to analyze the coordination between tissue behaviors during early vertebrate embryo morphogenetic events.


Asunto(s)
Coturnix/embriología , Animales , Animales Modificados Genéticamente , Apoptosis , Fenómenos Biomecánicos , Tipificación del Cuerpo/fisiología , Recuento de Células , Movimiento Celular/fisiología , Proliferación Celular , Tamaño de la Célula , Coturnix/genética , Imagenología Tridimensional , Proteínas Luminiscentes/genética , Morfogénesis/fisiología
9.
Methods Mol Biol ; 1650: 125-147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28809018

RESUMEN

Real-time four-dimensional (4D, xyzt) imaging of cultured avian embryos is an ideal method for investigating the complex movements of cells and tissues during early morphogenesis. While methods that transiently label cells, such as electroporation, are highly useful for dynamic imaging, they can also be limiting due to the number and type of cells that can be effectively targeted. In contrast, the heritable, stable, and long-term expression of a fluorescent protein driven by the exogenous promoter of a transgene overcomes these challenges. We have used lentiviral vectors to produce several novel transgenic quail lines that express fluorescent proteins either ubiquitously or in a cell-specific manner. These lines have proven to be useful models for dynamic imaging and analysis. Here, we provide detailed protocols for generating transgenic quail with the emphasis on producing high titer lentivirus , effectively introducing it into the early embryo and efficiently screening for G1 founder birds .


Asunto(s)
Aves/crecimiento & desarrollo , Proteínas Fluorescentes Verdes/metabolismo , Modelos Animales , Codorniz/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Aves/metabolismo , Vectores Genéticos , Lentivirus/genética , Morfogénesis , Codorniz/metabolismo , Transgenes
10.
Development ; 144(2): 281-291, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28096216

RESUMEN

Cells may exchange information with other cells and tissues by exerting forces on the extracellular matrix (ECM). Fibronectin (FN) is an important ECM component that forms fibrils through cell contacts and creates directionally biased geometry. Here, we demonstrate that FN is deposited as pillars between widely separated germ layers, namely the somitic mesoderm and the endoderm, in quail embryos. Alongside the FN pillars, long filopodia protrude from the basal surfaces of somite epithelial cells. Loss-of-function of Ena/VASP, α5ß1-integrins or talin in the somitic cells abolished the FN pillars, indicating that FN pillar formation is dependent on the basal filopodia through these molecules. The basal filopodia and FN pillars are also necessary for proper somite morphogenesis. We identified a new mechanism contributing to FN pillar formation by focusing on cyclic expansion of adjacent dorsal aorta. Maintenance of the directional alignment of the FN pillars depends on pulsatile blood flow through the dorsal aortae. These results suggest that the FN pillars are specifically established through filopodia-mediated and pulsating force-related mechanisms.


Asunto(s)
Vasos Sanguíneos/fisiología , Endodermo/metabolismo , Mesodermo/metabolismo , Seudópodos/fisiología , Codorniz/embriología , Estrés Mecánico , Animales , Animales Modificados Genéticamente , Movimiento Celular , Embrión no Mamífero , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Morfogénesis
11.
Development ; 143(19): 3632-3637, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27702788

RESUMEN

In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.


Asunto(s)
Hibridación in Situ/métodos , ARN Mensajero/metabolismo , Animales , Drosophila , Embrión no Mamífero/metabolismo , Humanos , Pez Cebra
12.
Dev Biol ; 413(1): 70-85, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26988118

RESUMEN

During amniote embryogenesis the nervous and vascular systems interact in a process that significantly affects the respective morphogenesis of each network by forming a "neurovascular" link. The importance of neurovascular cross-talk in the central nervous system has recently come into focus with the growing awareness that these two systems interact extensively both during development, in the stem-cell niche, and in neurodegenerative conditions such as Alzheimer's Disease and Amyotrophic Lateral Sclerosis. With respect to the peripheral nervous system, however, there have been no live, real-time investigations of the potential relationship between these two developing systems. To address this deficit, we used multispectral 4D time-lapse imaging in a transgenic quail model in which endothelial cells (ECs) express a yellow fluorescent marker, while neural crest cells (NCCs) express an electroporated red fluorescent marker. We monitored EC and NCC migration in real-time during formation of the peripheral nervous system. Our time-lapse recordings indicate that NCCs and ECs are physically juxtaposed and dynamically interact at multiple locations along their trajectories. These interactions are stereotypical and occur at precise anatomical locations along the NCC migratory pathway. NCCs migrate alongside the posterior surface of developing intersomitic vessels, but fail to cross these continuous streams of motile ECs. NCCs change their morphology and migration trajectory when they encounter gaps in the developing vasculature. Within the nascent dorsal root ganglion, proximity to ECs causes filopodial retraction which curtails forward persistence of NCC motility. Overall, our time-lapse recordings support the conclusion that primary vascular networks substantially influence the distribution and migratory behavior of NCCs and the patterned formation of dorsal root and sympathetic ganglia.


Asunto(s)
Células Endoteliales/citología , Ganglios Espinales/embriología , Microscopía/métodos , Cresta Neural/embriología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Simpático/embriología , Imagen de Lapso de Tiempo/métodos , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/metabolismo , Tipificación del Cuerpo , Comunicación Celular , Movimiento Celular , Coturnix , Ganglios Espinales/citología , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Proteínas Luminiscentes/metabolismo , Cresta Neural/citología , Células Madre/citología
13.
Development ; 142(16): 2850-9, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26209648

RESUMEN

Embryogenesis is the coordinated assembly of tissues during morphogenesis through changes in individual cell behaviors and collective cell movements. Dynamic imaging, combined with quantitative analysis, is ideal for investigating fundamental questions in developmental biology involving cellular differentiation, growth control and morphogenesis. However, a reliable amniote model system that is amenable to the rigors of extended, high-resolution imaging and cell tracking has been lacking. To address this shortcoming, we produced a novel transgenic quail that ubiquitously expresses nuclear localized monomer cherry fluorescent protein (chFP). We characterize the expression pattern of chFP and provide concrete examples of how Tg(PGK1:H2B-chFP) quail can be used to dynamically image and analyze key morphogenetic events during embryonic stages X to 11.


Asunto(s)
Animales Modificados Genéticamente , Desarrollo Embrionario/fisiología , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Modelos Animales , Morfogénesis/fisiología , Imagen de Lapso de Tiempo/métodos , Animales , Proliferación Celular/fisiología , Lentivirus , Plásmidos/genética , Codorniz
14.
Nat Commun ; 6: 6798, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25865282

RESUMEN

The diverse morphology of vertebrate skeletal system is genetically controlled, yet the means by which cells shape the skeleton remains to be fully illuminated. Here we perform quantitative analyses of cell behaviours in the growth plate cartilage, the template for long bone formation, to gain insights into this process. Using a robust avian embryonic organ culture, we employ time-lapse two-photon laser scanning microscopy to observe proliferative cells' behaviours during cartilage growth, resulting in cellular trajectories with a spreading displacement mainly along the tissue elongation axis. We build a novel software toolkit of quantitative methods to segregate the contributions of various cellular processes to the cellular trajectories. We find that convergent-extension, mitotic cell division, and daughter cell rearrangement do not contribute significantly to the observed growth process; instead, extracellular matrix deposition and cell volume enlargement are the key contributors to embryonic cartilage elongation.


Asunto(s)
Cartílago/ultraestructura , Condrocitos/ultraestructura , Fibroblastos/ultraestructura , Placa de Crecimiento/ultraestructura , Huesos del Metacarpo/ultraestructura , Osteogénesis/fisiología , Animales , Cartílago/embriología , Cartílago/metabolismo , División Celular , Movimiento Celular , Tamaño de la Célula , Embrión de Pollo , Condrocitos/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Placa de Crecimiento/embriología , Placa de Crecimiento/metabolismo , Huesos del Metacarpo/embriología , Huesos del Metacarpo/metabolismo , Microscopía Confocal , Técnicas de Cultivo de Órganos , Fotones , Retroviridae/genética , Imagen de Lapso de Tiempo
15.
Cold Spring Harb Protoc ; 2015(3): 259-68, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25734068

RESUMEN

Multiplexed fluorescent hybridization chain reaction (HCR) and advanced imaging techniques can be used to evaluate combinatorial gene expression patterns in whole mouse embryos with unprecedented spatial resolution. Using HCR, DNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled DNA HCR hairpins self-assemble into tethered fluorescent amplification polymers. Each target mRNA is detected by a probe set containing one or more DNA probes, with each probe carrying two HCR initiators. For multiplexed experiments, probe sets for different target mRNAs carry orthogonal initiators that trigger orthogonal DNA HCR amplification cascades labeled by spectrally distinct fluorophores. As a result, in situ amplification is performed for all targets simultaneously, and the duration of the experiment is independent of the number of target mRNAs. We have used multiplexed fluorescent in situ HCR and advanced imaging technologies to address questions of cell heterogeneity and tissue complexity in craniofacial patterning and anterior neural development. In the sample protocol presented here, we detect three different mRNA targets: Tg(egfp), encoding the enhanced green fluorescent protein (GFP) transgene (typically used as a control); Twist1, encoding a transcription factor involved in cell lineage determination and differentiation; and Pax2, encoding a transcription factor expressed in the mid-hindbrain region of the mouse embryo.


Asunto(s)
Embrión de Mamíferos , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico/métodos , ARN Mensajero/análisis , Animales , Encéfalo/embriología , Ratones
16.
Cold Spring Harb Protoc ; 2014(12): 1290-311, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25447284

RESUMEN

This weeklong protocol for making and testing lentivirus has been used in the Advanced Topics in Molecular Neuroscience (ATMN) lecture and laboratory course at Cold Spring Harbor Laboratory (CSHL) for nearly a decade. Lentiviruses are derived from HIV-1 and are ideal vehicles for the delivery of multiple genes of interest into target cells. In this protocol, 2A peptide-linked sequences are used to create a bicistronic lentiviral construct containing a ubiquitous promoter (chick ß actin with a cytomegalovirus [CMV] early enhancer) driving dual expression of two fluorescent proteins (FP): H2B-Cerulean (a nuclear-localized blue FP) and Dendra2 (a photoactivatable green FP that converts to red after exposure to UV light). Polymerase chain reaction (PCR) amplification of the bicistronic insert is followed by subcloning into a lentiviral vector and transfection into a packaging cell line. The resulting viral supernatants can be used to prepare concentrated stocks and infect cells for imaging via epifluorescent and confocal microscopy.


Asunto(s)
Técnicas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Lentivirus/metabolismo , Péptidos/metabolismo , Animales , Secuencia de Bases , Pollos , ADN/metabolismo , Electroforesis en Gel de Agar , Escherichia coli/metabolismo , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Células 3T3 NIH , Oligonucleótidos/genética , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Transfección , Transformación Genética
17.
Organogenesis ; 10(4): 350-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482403

RESUMEN

The tissue scale deformations (≥ 1 mm) required to form an amniote embryo are poorly understood. Here, we studied ∼400 µm-sized explant units from gastrulating quail embryos. The explants deformed in a reproducible manner when grown using a novel vitelline membrane-based culture method. Time-lapse recordings of latent embryonic motion patterns were analyzed after disk-shaped tissue explants were excised from three specific regions near the primitive streak: 1) anterolateral epiblast, 2) posterolateral epiblast, and 3) the avian organizer (Hensen's node). The explants were cultured for 8 hours-an interval equivalent to gastrulation. Both the anterolateral and the posterolateral epiblastic explants engaged in concentric radial/centrifugal tissue expansion. In sharp contrast, Hensen's node explants displayed Cartesian-like, elongated, bipolar deformations-a pattern reminiscent of axis elongation. Time-lapse analysis of explant tissue motion patterns indicated that both cellular motility and extracellular matrix fiber (tissue) remodeling take place during the observed morphogenetic deformations. As expected, treatment of tissue explants with a selective Rho-Kinase (p160ROCK) signaling inhibitor, Y27632, completely arrested all morphogenetic movements. Microsurgical experiments revealed that lateral epiblastic tissue was dispensable for the generation of an elongated midline axis- provided that an intact organizer (node) is present. Our computational analyses suggest the possibility of delineating tissue-scale morphogenetic movements at anatomically discrete locations in the embryo. Further, tissue deformation patterns, as well as the mechanical state of the tissue, require normal actomyosin function. We conclude that amniote embryos contain tissue-scale, regionalized morphogenetic motion generators, which can be assessed using our novel computational time-lapse imaging approach. These data and future studies-using explants excised from overlapping anatomical positions-will contribute to understanding the emergent tissue flow that shapes the amniote embryo.


Asunto(s)
Embrión no Mamífero/fisiología , Gastrulación/fisiología , Codorniz/embriología , Codorniz/fisiología , Animales , Movimiento (Física)
18.
Dev Cell ; 31(6): 690-706, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25482882

RESUMEN

The dorsal mesentery (DM) is the major conduit for blood and lymphatic vessels in the gut. The mechanisms underlying their morphogenesis are challenging to study and remain unknown. Here we show that arteriogenesis in the DM begins during gut rotation and proceeds strictly on the left side, dependent on the Pitx2 target gene Cxcl12. Although competent Cxcr4-positive angioblasts are present on the right, they fail to form vessels and progressively emigrate. Surprisingly, gut lymphatics also initiate in the left DM and arise only after-and dependent on-arteriogenesis, implicating arteries as drivers of gut lymphangiogenesis. Our data begin to unravel the origin of two distinct vascular systems and demonstrate how early left-right molecular asymmetries are translated into organ-specific vascular patterns. We propose a dual origin of gut lymphangiogenesis in which prior arterial growth is required to initiate local lymphatics that only subsequently connect to the vascular system.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Intestinos/embriología , Sistema Linfático/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Arterias/embriología , Quimiocina CXCL12/metabolismo , Pollos , Proteínas Fluorescentes Verdes/metabolismo , Linfangiogénesis , Vasos Linfáticos/embriología , Mesenterio , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Codorniz , Receptores CXCR4/metabolismo , Proteína del Homeodomínio PITX2
19.
BMC Biol ; 12: 92, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25385196

RESUMEN

BACKGROUND: Parasympathetic signaling has been inferred to regulate epithelial branching as well as organ regeneration and tumor development. However, the relative contribution of local nerve contact versus secreted signals remains unclear. Here, we show a conserved (vertebrates to invertebrates) requirement for intact local nerves in airway branching, persisting even when cholinergic neurotransmission is blocked. RESULTS: In the vertebrate lung, deleting enhanced green fluorescent protein (eGFP)-labeled intrinsic neurons using a two-photon laser leaves adjacent cells intact, but abolishes branching. Branching is unaffected by similar laser power delivered to the immediately adjacent non-neural mesodermal tissue, by blocking cholinergic receptors or by blocking synaptic transmission with botulinum toxin A. Because adjacent vasculature and epithelial proliferation also contribute to branching in the vertebrate lung, the direct dependence on nerves for airway branching was tested by deleting neurons in Drosophila embryos. A specific deletion of neurons in the Drosophila embryo by driving cell-autonomous RicinA under the pan-neuronal elav enhancer perturbed Drosophila airway development. This system confirmed that even in the absence of a vasculature or epithelial proliferation, airway branching is still disrupted by neural lesioning. CONCLUSIONS: Together, this shows that airway morphogenesis requires local innervation in vertebrates and invertebrates, yet neurotransmission is dispensable. The need for innervation persists in the fly, wherein adjacent vasculature and epithelial proliferation are absent. Our novel, targeted laser ablation technique permitted the local function of parasympathetic innervation to be distinguished from neurotransmission.


Asunto(s)
Pulmón/inervación , Sistema Nervioso Parasimpático/metabolismo , Transmisión Sináptica , Animales , Proliferación Celular , Drosophila/embriología , Células Epiteliales/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/genética , Invertebrados/metabolismo , Pulmón/metabolismo , Ratones , Morfogénesis , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Vertebrados/metabolismo
20.
ACS Chem Biol ; 9(2): 334-8, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24274104

RESUMEN

Tumor suppressor microRNA-126 (miR-126) is often down-regulated in cancer cells, and its overexpression is found to inhibit cancer metastasis. To elucidate the mechanism of tumor suppression by miR-126, we analyzed the proteomic response to miR-126 overexpression in the human metastatic breast cancer cell line MDA-MB-231. To acquire quantitative, time-resolved information, we combined two complementary proteomic methods, BONCAT and SILAC. We discovered a new direct target of miR-126: CD97, a pro-metastatic G-protein-coupled receptor (GPCR) that has been reported to promote tumor cell invasion, endothelial cell migration, and tumor angiogenesis. This discovery establishes a link between down-regulation of miR-126 and overexpression of CD97 in cancer and provides new mechanistic insight into the role of miR-126 in inhibiting both cell-autonomous and non-cell-autonomous cancer progression.


Asunto(s)
Antígenos CD/genética , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/patología , Femenino , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteómica , Receptores Acoplados a Proteínas G , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...