Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(3): 102252, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39071954

RESUMEN

We investigated the role of the endoplasmic reticulum (ER) stress-regulated long noncoding RNA (lncRNA) lncMGC in pancreatic islets and the pathology of type 1 diabetes (T1D), as well as the potential of lncMGC-based therapeutics. In vivo, blood glucose levels (BGLs) and HbA1c were significantly lower in lncMGC-knockout (KO)-streptozotocin (STZ)-treated diabetic mice compared to wild-type STZ. Antisense oligonucleotides (GapmeR) targeting lncMGC significantly attenuated insulitis and BGLs in T1D NOD mice compared to GapmeR-negative control (NC). GapmeR-injected T1D Akita mice showed significantly lower BGLs compared to Akita-NC mice. hlncMGC-GapmeR lowered BGLs in partially humanized lncMGC (hlncMGC)-STZ mice compared to NC-injected mice. CHOP (ER stress regulating transcription factor) and lncMGC were upregulated in islets from diabetic mice but not in lncMGC-KO and GapmeR-injected diabetic mice, suggesting ER stress involvement. In vitro, hlncMGC-GapmeR increased the viability of isolated islets from human donors and hlncMGC mice and protected them from cytokine-induced apoptosis. Anti-ER stress and anti-apoptotic genes were upregulated, but pro-apoptotic genes were down-regulated in lncMGC KO mice islets and GapmeR-treated human islets. Taken together, these results show that a GapmeR-targeting lncMGC is effective in ameliorating diabetes in mice and also preserves human and mouse islet viability, implicating clinical translation potential.

2.
Front Mol Biosci ; 10: 1204124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325470

RESUMEN

Background: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play key roles in diabetic kidney disease (DKD). The miR-379 megacluster of miRNAs and its host transcript lnc-megacluster (lncMGC) are regulated by transforming growth factor-ß (TGF-ß), increased in the glomeruli of diabetic mice, and promote features of early DKD. However, biochemical functions of lncMGC are unknown. Here, we identified lncMGC-interacting proteins by in vitro-transcribed lncMGC RNA pull down followed by mass spectrometry. We also created lncMGC-knockout (KO) mice by CRISPR-Cas9 editing and used primary mouse mesangial cells (MMCs) from the KO mice to examine the effects of lncMGC on the gene expression related to DKD, changes in promoter histone modifications, and chromatin remodeling. Methods: In vitro-transcribed lncMGC RNA was mixed with lysates from HK2 cells (human kidney cell line). lncMGC-interacting proteins were identified by mass spectrometry. Candidate proteins were confirmed by RNA immunoprecipitation followed by qPCR. Cas9 and guide RNAs were injected into mouse eggs to create lncMGC-KO mice. Wild-type (WT) and lncMGC-KO MMCs were treated with TGF-ß, and RNA expression (by RNA-seq and qPCR) and histone modifications (by chromatin immunoprecipitation) and chromatin remodeling/open chromatin (by Assay for Transposase-Accessible Chromatin using sequencing, ATAC-seq) were examined. Results: Several nucleosome remodeling factors including SMARCA5 and SMARCC2 were identified as lncMGC-interacting proteins by mass spectrometry, and confirmed by RNA immunoprecipitation-qPCR. MMCs from lncMGC-KO mice showed no basal or TGF-ß-induced expression of lncMGC. Enrichment of histone H3K27 acetylation and SMARCA5 at the lncMGC promoter was increased in TGF-ß-treated WT MMCs but significantly reduced in lncMGC-KO MMCs. ATAC peaks at the lncMGC promoter region and many other DKD-related loci including Col4a3 and Col4a4 were significantly lower in lncMGC-KO MMCs compared to WT MMCs in the TGF-ß-treated condition. Zinc finger (ZF), ARID, and SMAD motifs were enriched in ATAC peaks. ZF and ARID sites were also found in the lncMGC gene. Conclusion: lncMGC RNA interacts with several nucleosome remodeling factors to promote chromatin relaxation and enhance the expression of lncMGC itself and other genes including pro-fibrotic genes. The lncMGC/nucleosome remodeler complex promotes site-specific chromatin accessibility to enhance DKD-related genes in target kidney cells.

3.
Arterioscler Thromb Vasc Biol ; 43(7): 1157-1175, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37128912

RESUMEN

BACKGROUND: Obesity and diabetes are associated with elevated free fatty acids like palmitic acid (PA), which promote chronic inflammation and impaired inflammation resolution associated with cardiometabolic disorders. Long noncoding RNAs (lncRNAs) are implicated in inflammatory processes; however, their roles in PA-regulated inflammation and resolution are unclear. METHODS: We performed RNA-sequencing analysis to identify PA-regulated coding genes and novel lncRNAs in CD14+ monocytes from healthy volunteers. We investigated the regulation and function of an uncharacterized PA-induced lncRNA PARAIL (PA-regulated anti-inflammatory lncRNA). We examined its role in inflammation resolution by employing knockdown and overexpression strategies in human and mouse macrophages. We also used RNA pulldown coupled with mass spectrometry to identify PARAIL interacting nuclear proteins and their mechanistic involvement in PARAIL functions in human macrophages. RESULTS: Treatment of human CD14+ monocytes with PA-induced several lncRNAs and genes associated with inflammatory phenotype. PA strongly induced lncRNA PARAIL expressed near RIPK2. PARAIL was also induced by cytokines and infectious agents in human monocytes/macrophages and was regulated by NF-κB (nuclear factor-kappa B). Time course studies showed PARAIL was induced during inflammation resolution phase in PA-treated macrophages. PARAIL knockdown with antisense oligonucleotides upregulated key inflammatory genes and vice versa with PARAIL overexpression. We found that PARAIL interacts with ELAVL1 (ELAV-like RNA-binding protein 1) protein via adenylate/uridylate-rich elements (AU-rich elements; AREs). ELAVL1 knockdown inhibited the anti-inflammatory functions of PARAIL. Moreover, PARAIL knockdown increased cytosolic localization of ELAVL1 and increased the stability of ARE-containing inflammatory genes. Mouse orthologous Parail was downregulated in macrophages from mice with diabetes and atherosclerosis. Parail overexpression attenuated proinflammatory genes in mouse macrophages. CONCLUSIONS: Upregulation of PARAIL under acute inflammatory conditions contributes to proresolution mechanisms via PARAIL-ELAVL1 interactions. Conversely, PARAIL downregulation in cardiometabolic diseases enhances ELAVL1 function and impairs inflammation resolution to further augment inflammation. Thus, inflammation-resolving lncRNAs like PARAIL represent novel targets to combat inflammatory cardiometabolic diseases.


Asunto(s)
Aterosclerosis , ARN Largo no Codificante , Humanos , Ratones , Animales , Monocitos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ácido Palmítico/toxicidad , Ácido Palmítico/metabolismo , Macrófagos/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , FN-kappa B/metabolismo , Aterosclerosis/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo
4.
Mol Ther Nucleic Acids ; 30: 115-130, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36250205

RESUMEN

We investigated the role of microRNA (miR-379) in the pathogenesis of obesity, adipose tissue dysfunction, and insulin resistance (IR). We used miR-379 knockout (miR-379KO) mice to test whether loss of miR-379 affects high-fat diet (HFD)-induced obesity and IR via dysregulation of key miR-379 targets in adipose tissue. Increases in body weight, hyperinsulinemia, and IR in wild-type (WT)-HFD mice were significantly attenuated in miR-379KO-HFD mice with some sex differences. Relative to control chow-fed mice, in WT-HFD mice, expression of miR-379 and C/EBP homologous protein (Chop) (pro-endoplasmic reticulum [ER] stress) and inflammation in perigonadal white adipose tissue (gWAT) were increased, whereas adipogenic genes and miR-379 target genes (Vegfb and Edem3) were decreased. These changes, as well as key parameters of brown adipose tissue dysfunction (including mitochondrial defects), were significantly attenuated in miR-379KO-HFD mice. WAT from obese human subjects with and without type 2 diabetes showed increased miR-379 and decreased miR-379 target genes. In cultured 3T3L1 pre-adipocytes, miR-379 inhibitors increased miR-379 targets and adipogenic genes. These data suggest that miR-379 plays an important role in HFD-induced obesity through increased adipose inflammation, mitochondrial dysfunction, and ER stress as well as impaired adipogenesis and angiogenesis. miR-379 inhibitors may be developed as novel therapies for obesity and associated complications.

5.
Am J Physiol Renal Physiol ; 323(6): F686-F699, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227097

RESUMEN

Obesity is associated with increased risk for diabetes and damage to the kidneys. Evidence suggests that miR-379 plays a role in the pathogenesis of diabetic kidney disease. However, its involvement in obesity-induced kidney injury is not known and was therefore investigated in this study by comparing renal phenotypes of high-fat diet (HFD)-fed wild-type (WT) and miR-379 knockout (KO) mice. Male and female WT mice on the HFD for 10 or 24 wk developed obesity, hyperinsulinemia, and kidney dysfunction manifested by albuminuria and glomerular injuries. However, these adverse alterations in HFD-fed WT mice were significantly ameliorated in HFD-fed miR-379 KO mice. HFD feeding increased glomerular expression of miR-379 and decreased its target gene, endoplasmic reticulum (ER) degradation enhancing α-mannosidase-like protein 3 (Edem3), a negative regulator of ER stress. Relative to the standard chow diet-fed controls, expression of profibrotic transforming growth factor-ß1 (Tgf-ß1) was significantly increased, whereas Zeb2, which encodes ZEB2, a negative regulator of Tgf-ß1, was decreased in the glomeruli in HFD-fed WT mice. Notably, these changes as well as HFD-induced increased expression of other profibrotic genes, glomerular hypertrophy, and interstitial fibrosis in HFD-fed WT mice were attenuated in HFD-fed miR-379 KO mice. In cultured primary glomerular mouse mesangial cells (MMCs) isolated from WT mice, treatment with high insulin (mimicking hyperinsulinemia) increased miR-379 expression and decreased its target, Edem3. Moreover, insulin also upregulated Tgf-ß1 and downregulated Zeb2 in WT MMCs, but these changes were significantly attenuated in MMCs from miR-379 KO mice. Together, these experiments revealed that miR-379 deletion protects mice from HFD- and hyperinsulinemia-induced kidney injury at least in part through reduced ER stress.NEW & NOTEWORTHY miR-379 knockout mice are protected from high-fat diet (HFD)-induced kidney damage through key miR-379 targets associated with ER stress (Edem3). Mechanistically, treatment of mesangial cells with insulin (mimicking hyperinsulinemia) increased expression of miR-379, Tgf-ß1, miR-200, and Chop and decreases Edem3. Furthermore, TGF-ß1-induced fibrotic genes are attenuated by a GapmeR targeting miR-379. The results implicate a miR-379/EDEM3/ER stress/miR-200c/Zeb2 signaling pathway in HFD/obesity/insulin resistance-induced renal dysfunction. Targeting miR-379 with GapmeRs can aid in the treatment of obesity-induced kidney disease.


Asunto(s)
Nefropatías Diabéticas , Resistencia a la Insulina , MicroARNs , Animales , Femenino , Masculino , Ratones , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Dieta Alta en Grasa/efectos adversos , Insulina/metabolismo , Riñón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
6.
Cells ; 10(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685676

RESUMEN

Long non-coding RNAs (lncRNAs) play key roles in Angiotensin II (AngII) signaling but their role in chondrogenic transformation of vascular smooth muscle cells (VSMCs) is unknown. We describe a novel AngII-induced lncRNA Alivec (Angiotensin II-induced lncRNA in VSMCs eliciting chondrogenic phenotype) implicated in VSMC chondrogenesis. In rat VSMCs, Alivec and the nearby gene Acan, a chondrogenic marker, were induced by growth factors AngII and PDGF and the inflammatory cytokine TNF-α. AngII co-regulated Alivec and Acan through the activation of AngII type1 receptor signaling and Sox9, a master transcriptional regulator of chondrogenesis. Alivec knockdown with GapmeR antisense-oligonucleotides attenuated the expression of AngII-induced chondrogenic marker genes, including Acan, and inhibited the chondrogenic phenotype of VSMCs. Conversely, Alivec overexpression upregulated these genes and promoted chondrogenic transformation. RNA-pulldown coupled to mass-spectrometry identified Tropomyosin-3-alpha and hnRNPA2B1 proteins as Alivec-binding proteins in VSMCs. Furthermore, male rats with AngII-driven hypertension showed increased aortic expression of Alivec and Acan. A putative human ortholog ALIVEC, was induced by AngII in human VSMCs, and this locus was found to harbor the quantitative trait loci affecting blood pressure. Together, these findings suggest that AngII-regulated lncRNA Alivec functions, at least in part, to mediate the AngII-induced chondrogenic transformation of VSMCs implicated in vascular dysfunction and hypertension.


Asunto(s)
Angiotensina II/farmacología , Condrogénesis/genética , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , ARN Largo no Codificante/metabolismo , Agrecanos/genética , Agrecanos/metabolismo , Animales , Aorta/metabolismo , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Condrogénesis/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Masculino , Contracción Muscular/genética , Miocitos del Músculo Liso/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , ARN Largo no Codificante/genética , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Factor de Transcripción SOX9/metabolismo , Tropomiosina/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Familia-src Quinasas/metabolismo
7.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945509

RESUMEN

Long noncoding RNAs (lncRNAs) are increasingly implicated in the pathology of diabetic complications. Here, we examined the role of lncRNAs in monocyte dysfunction and inflammation associated with human type 2 diabetes mellitus (T2D). RNA sequencing analysis of CD14+ monocytes from patients with T2D versus healthy controls revealed downregulation of antiinflammatory and antiproliferative genes, along with several lncRNAs, including a potentially novel divergent lncRNA diabetes regulated antiinflammatory RNA (DRAIR) and its nearby gene CPEB2. High glucose and palmitic acid downregulated DRAIR in cultured CD14+ monocytes, whereas antiinflammatory cytokines and monocyte-to-macrophage differentiation upregulated DRAIR via KLF4 transcription factor. DRAIR overexpression increased antiinflammatory and macrophage differentiation genes but inhibited proinflammatory genes. Conversely, DRAIR knockdown attenuated antiinflammatory genes, promoted inflammatory responses, and inhibited phagocytosis. DRAIR regulated target gene expression through interaction with chromatin, as well as inhibition of the repressive epigenetic mark H3K9me2 and its corresponding methyltransferase G9a. Mouse orthologous Drair and Cpeb2 were also downregulated in peritoneal macrophages from T2D db/db mice, and Drair knockdown in nondiabetic mice enhanced proinflammatory genes in macrophages. Thus, DRAIR modulates the inflammatory phenotype of monocytes/macrophages via epigenetic mechanisms, and its downregulation in T2D may promote chronic inflammation. Augmentation of endogenous lncRNAs like DRAIR could serve as novel antiinflammatory therapies for diabetic complications.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Monocitos/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Adulto , Animales , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Epigénesis Genética , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Células THP-1 , Adulto Joven
9.
Commun Biol ; 4(1): 30, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398021

RESUMEN

Diabetic kidney disease (DKD) is a major complication of diabetes. Expression of members of the microRNA (miRNA) miR-379 cluster is increased in DKD. miR-379, the most upstream 5'-miRNA in the cluster, functions in endoplasmic reticulum (ER) stress by targeting EDEM3. However, the in vivo functions of miR-379 remain unclear. We created miR-379 knockout (KO) mice using CRISPR-Cas9 nickase and dual guide RNA technique and characterized their phenotype in diabetes. We screened for miR-379 targets in renal mesangial cells from WT vs. miR-379KO mice using AGO2-immunopreciptation and CLASH (cross-linking, ligation, sequencing hybrids) and identified the redox protein thioredoxin and mitochondrial fission-1 protein. miR-379KO mice were protected from features of DKD as well as body weight loss associated with mitochondrial dysfunction, ER- and oxidative stress. These results reveal a role for miR-379 in DKD and metabolic processes via reducing adaptive mitophagy. Strategies targeting miR-379 could offer therapeutic options for DKD.


Asunto(s)
Albuminuria/metabolismo , Nefropatías Diabéticas/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Animales , Nefropatías Diabéticas/patología , Matriz Extracelular/metabolismo , Membrana Basal Glomerular/patología , Células Mesangiales/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 40(4): 914-928, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078363

RESUMEN

OBJECTIVE: Systemic low-grade inflammation associated with obesity and metabolic syndrome is a strong risk factor for the development of diabetes mellitus and associated cardiovascular complications. This inflammatory state is caused by release of proinflammatory cytokines by macrophages, especially in adipose tissue. Long noncoding RNAs regulate macrophage activation and inflammatory gene networks, but their role in macrophage dysfunction during diet-induced obesity has been largely unexplored. Approach and Results: We sequenced total RNA from peritoneal macrophages isolated from mice fed either high-fat diet or standard diet and performed de novo transcriptome assembly to identify novel differentially expressed mRNAs and long noncoding RNAs. A top candidate long noncoding RNA, macrophage inflammation-suppressing transcript (Mist), was downregulated in both peritoneal macrophages and adipose tissue macrophages from high-fat diet-fed mice. GapmeR-mediated Mist knockdown in vitro and in vivo upregulated expression of genes associated with immune response and inflammation and increased modified LDL (low-density lipoprotein) uptake in macrophages. Conversely, Mist overexpression decreased basal and LPS (lipopolysaccharide)-induced expression of inflammatory response genes and decreased modified LDL uptake. RNA-pull down coupled with mass spectrometry showed that Mist interacts with PARP1 (poly [ADP]-ribose polymerase-1). Disruption of this RNA-protein interaction increased PARP1 recruitment and chromatin PARylation at promoters of inflammatory genes, resulting in increased gene expression. Furthermore, human orthologous MIST was also downregulated by proinflammatory stimuli, and its expression in human adipose tissue macrophages inversely correlated with obesity and insulin resistance. CONCLUSIONS: Mist is a novel protective long noncoding RNA, and its loss during obesity contributes to metabolic dysfunction and proinflammatory phenotype of macrophages via epigenetic mechanisms.


Asunto(s)
Inflamación/fisiopatología , Activación de Macrófagos/genética , Obesidad/genética , Obesidad/fisiopatología , ARN Largo no Codificante/fisiología , Tejido Adiposo/metabolismo , Animales , Línea Celular , LDL-Colesterol/metabolismo , Cromatina/genética , Citocinas/fisiología , Regulación hacia Abajo , Humanos , Metabolismo de los Lípidos/genética , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/fisiopatología , Ratones Endogámicos C57BL , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli ADP Ribosilación , Regulación hacia Arriba
11.
J Biol Chem ; 294(34): 12695-12707, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31266808

RESUMEN

Transforming growth factor-ß1 (TGF-ß)-induced fibrotic and inflammatory genes in renal mesangial cells (MCs) play important roles in glomerular dysfunction associated with diabetic nephropathy (DN). TGF-ß regulates gene expression in MCs by altering key chromatin histone modifications at target gene promoters. However, the role of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification is unclear. Here we show that TGF-ß reduces H3K27me3 at the Ctgf, Serpine1, and Ccl2 gene promoters in rat MCs (RMCs) and reciprocally up-regulates the expression of these pro-fibrotic and inflammatory genes. In parallel, TGF-ß down-regulates Enhancer of Zeste homolog 2 (Ezh2), an H3K27me3 methyltransferase, and decreases its recruitment at Ctgf and Ccl2 but not Serpine1 promoters. Ezh2 knockdown with siRNAs enhances TGF-ß-induced expression of these genes, supporting its repressive function. Mechanistically, Ezh2 down-regulation is mediated by TGF-ß-induced microRNA, miR-101b, which targets Ezh2 3'-UTR. TGF-ß also up-regulates Jmjd3 and Utx in RMCs, suggesting a key role for these H3K27me3 demethylases in H3K27me3 inhibition. In RMCs, Utx knockdown inhibits hypertrophy, a key event in glomerular dysfunction. The H3K27me3 regulators are similarly altered in human and mouse MCs. High glucose inhibits Ezh2 and increases miR-101b in a TGF-ß-dependent manner. Furthermore, in kidneys from rodent models of DN, fibrotic genes, miR-101b, and H3K27me3 demethylases are up-regulated, whereas Ezh2 protein levels as well as enrichment of Ezh2 and H3K27me3 at target genes are decreased, demonstrating in vivo relevance. These results suggest that H3K27me3 inhibition by TGF-ß via dysregulation of related histone-modifying enzymes and miRNAs augments pathological genes mediating glomerular mesangial dysfunction and DN.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Nefropatías Diabéticas/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Lisina/metabolismo , Células Mesangiales/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/genética , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/genética , Humanos , Inyecciones Intraperitoneales , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Estreptozocina/administración & dosificación
12.
Circ Res ; 123(12): 1298-1312, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30566058

RESUMEN

RATIONALE: AngII (angiotensin II)-mediated vascular smooth muscle cell (VSMC) dysfunction plays a major role in hypertension. Long noncoding RNAs have elicited much interest, but their molecular roles in AngII actions and hypertension are unclear. OBJECTIVE: To investigate the regulation and functions of a novel long noncoding RNA growth factor- and proinflammatory cytokine-induced vascular cell-expressed RNA ( Giver), in AngII-mediated VSMC dysfunction. METHODS AND RESULTS: RNA-sequencing and real-time quantitative polymerase chain reactions revealed that treatment of rat VSMC with AngII increased the expression of Giver and Nr4a3, an adjacent gene encoding a nuclear receptor. Similar changes were observed in rat and mouse aortas treated ex vivo with AngII. RNA-FISH (fluorescence in situ hybridization) and subcellular fractionation showed predominantly nuclear localization of Giver. AngII increased Giver expression via recruitment of Nr4a3 to Giver promoter. Microarray profiling and real-time quantitative polymerase chain reaction validation in VSMC showed that Giver knockdown attenuated the expression of genes involved in oxidative stress ( Nox1) and inflammation ( Il6, Ccl2, Tnf) but increased Nr4a3. Conversely, endogenous Giver overexpression showed opposite effects supporting its role in oxidative stress and inflammation. Chromatin immunoprecipitation assays showed Giver overexpression also increased Pol II (RNA polymerase II) enrichment and decreased repressive histone modification histone H3 trimethylation on lysine 27 at Nox1 and inflammatory gene promoters. Accordingly, Giver knockdown inhibited AngII-induced oxidative stress and proliferation in rat VSMC. RNA-pulldown combined with mass spectrometry showed Giver interacts with nuclear and chromatin remodeling proteins and corepressors, including NONO (non-pou domain-containing octamer-binding protein). Moreover, NONO knockdown elicited similar effects as Giver knockdown on the expression of key Giver-regulated genes. Notably, GIVER and NR4A3 were increased in AngII-treated human VSMC and in arteries from hypertensive patients but attenuated in hypertensive patients treated with ACE (angiotensin-converting enzyme) inhibitors or angiotensin receptor blockers. Furthermore, human GIVER also exhibits partial functional conservation with rat Giver. CONCLUSIONS: Giver and its regulator Nr4a3 are important players in AngII-mediated VSMC dysfunction and could be novel targets for antihypertensive therapy.


Asunto(s)
Proliferación Celular , Citocinas/metabolismo , Hipertensión/metabolismo , Músculo Liso Vascular/metabolismo , Estrés Oxidativo , ARN Largo no Codificante/genética , Animales , Células Cultivadas , Humanos , Hipertensión/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , ARN Largo no Codificante/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Arterioscler Thromb Vasc Biol ; 38(8): 1806-1820, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29930005

RESUMEN

Objective- Macrophages play key roles in inflammation and diabetic vascular complications. Emerging evidence implicates long noncoding RNAs in inflammation, but their role in macrophage dysfunction associated with inflammatory diabetic complications is unclear and was therefore investigated in this study. Approach and Results- RNA-sequencing and real-time quantitative PCR demonstrated that a long noncoding RNA Dnm3os (dynamin 3 opposite strand) is upregulated in bone marrow-derived macrophages from type 2 diabetic db/db mice, diet-induced insulin-resistant mice, and diabetic ApoE-/- mice, as well as in monocytes from type 2 diabetic patients relative to controls. Diabetic conditions (high glucose and palmitic acid) induced Dnm3os in mouse and human macrophages. Promoter reporter analysis and chromatin immunoprecipitation assays demonstrated that diabetic conditions induce Dnm3os via NF-κB activation. RNA fluorescence in situ hybridization and real-time quantitative PCRs of subcellular fractions demonstrated nuclear localization and chromatin enrichment of Dnm3os in macrophages. Stable overexpression of Dnm3os in macrophages altered global histone modifications and upregulated inflammation and immune response genes and phagocytosis. Conversely, RNAi-mediated knockdown of Dnm3os attenuated these responses. RNA pull-down assays with macrophage nuclear lysates identified nucleolin and ILF-2 (interleukin enhancer-binding factor 2) as protein binding partners of Dnm3os, which was further confirmed by RNA fluorescence in situ hybridization immunofluorescence. Furthermore, nucleolin levels were decreased in diabetic conditions, and its knockdown enhanced Dnm3os-induced inflammatory gene expression and histone H3K9-acetylation at their promoters. Conclusions- These results demonstrate novel mechanisms involving upregulation of long noncoding RNA Dnm3os, disruption of its interaction with nucleolin, and epigenetic modifications at target genes that promote macrophage inflammatory phenotype in diabetes mellitus. The data could lead to long noncoding RNA-based therapies for inflammatory diabetes mellitus complications.


Asunto(s)
Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Estudios de Casos y Controles , Núcleo Celular/genética , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Femenino , Humanos , Inflamación/genética , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Fagocitosis , Fenotipo , Fosfoproteínas/metabolismo , Unión Proteica , Células RAW 264.7 , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Estreptozocina , Regulación hacia Arriba , Nucleolina
14.
Sci Rep ; 8(1): 6954, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725042

RESUMEN

Autophagy plays a key role in the pathogenesis of kidney diseases, however its role in diabetic nephropathy (DN), and particularly in kidney glomerular mesangial cells (MCs) is not very clear. Transforming Growth Factor- ß1 (TGF-ß), a key player in the pathogenesis of DN, regulates expression of various microRNAs (miRNAs), some of which are known to regulate the expression of autophagy genes. Here we demonstrate that miR-192, induced by TGF-ß signaling, plays an important role in regulating autophagy in DN. The expression of key autophagy genes was decreased in kidneys of streptozotocin-injected type-1 and type-2 (db/db) diabetic mice and this was reversed by treatment with Locked Nucleic Acid (LNA) modified miR-192 inhibitors. Changes in autophagy gene expression were also attenuated in kidneys of diabetic miR-192-KO mice. In vitro studies using mouse glomerular mesangial cells (MMCs) also showed a decrease in autophagy gene expression with TGF-ß treatment. miR-192 mimic oligonucleotides also decreased the expression of certain autophagy genes. These results demonstrate that TGF-ß and miR-192 decrease autophagy in MMCs under diabetic conditions and this can be reversed by inhibition or deletion of miR-192, further supporting miR-192 as a useful therapeutic target for DN.


Asunto(s)
Autofagia , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/genética , Glomérulos Renales/patología , MicroARNs/genética , Transducción de Señal , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Regulación de la Expresión Génica , Hipertrofia/genética , Hipertrofia/patología , Glomérulos Renales/metabolismo , Ratones Endogámicos C57BL
15.
Nat Commun ; 8(1): 1467, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29133788

RESUMEN

Angiotensin II (AngII) promotes hypertension and atherosclerosis by activating growth-promoting and pro-inflammatory gene expression in vascular smooth muscle cells (VSMCs). Enhancers and super-enhancers (SEs) play critical roles in driving disease-associated gene expression. However, enhancers/SEs mediating VSMC dysfunction remain uncharacterized. Here, we show that AngII alters vascular enhancer and SE repertoires in cultured VSMCs in vitro, ex vivo, and in AngII-infused mice aortas in vivo. AngII-induced enhancers/SEs are enriched in binding sites for signal-dependent transcription factors and dependent on key signaling kinases. Moreover, CRISPR-Cas9-mediated deletion of candidate enhancers/SEs, targeting SEs with the bromodomain and extra-terminal domain inhibitor JQ1, or knockdown of overlapping long noncoding RNAs (lncRNAs) blocks AngII-induced genes associated with growth-factor signaling and atherosclerosis. Furthermore, JQ1 ameliorates AngII-induced hypertension, medial hypertrophy and inflammation in vivo in mice. These results demonstrate AngII-induced signals integrate enhancers/SEs and lncRNAs to increase expression of genes involved in VSMC dysfunction, and could uncover novel therapies.


Asunto(s)
Angiotensina II/metabolismo , Aterosclerosis/genética , Hipertensión/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , ARN Largo no Codificante/genética , Animales , Aorta/citología , Aorta/patología , Aterosclerosis/tratamiento farmacológico , Azepinas/farmacología , Células Cultivadas , Regulación de la Expresión Génica , Histonas/metabolismo , Hipertensión/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Triazoles/farmacología
17.
Sci Rep ; 6: 38789, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941951

RESUMEN

Phosphorylated methyl-CpG binding protein2 (p-MeCP2) suppresses the processing of several microRNAs (miRNAs). Homeo-domain interacting protein kinase2 (HIPK2) phosphorylates MeCP2, a known transcriptional repressor. However, it is not known if MeCP2 and HIPK2 are involved in processing of miRNAs implicated in diabetic nephropathy. p-MeCP2 and HIPK2 levels were significantly increased, but Seven in Absentia Homolog1 (SIAH1), which mediates proteasomal degradation of HIPK2, was decreased in the glomeruli of streptozotocin injected diabetic mice. Among several miRNAs, miR-25 and its precursor were significantly decreased in diabetic mice, whereas primary miR-25 levels were significantly increased. NADPH oxidase4 (NOX4), a target of miR-25, was significantly increased in diabetic mice. Protein levels of p-MeCP2, HIPK2, and NOX4 were increased in high glucose (HG)- or TGF-ß-treated mouse glomerular mesangial cells (MMCs). miR-25 (primary, precursor, and mature) and mRNA levels of genes indicated in the in vivo study showed similar trends of regulation in MMCs treated with HG or TGF-ß. The HG- or TGF-ß-induced upregulation of p-MeCP2, NOX4 and primary miR-25, but downregulation of precursor and mature miR-25, were attenuated by Hipk2 siRNA. These results demonstrate a novel role for the SIAH1/HIPK2/MeCP2 axis in suppressing miR-25 processing and thereby upregulating NOX4 in early diabetic nephropathy.


Asunto(s)
Proteínas Portadoras/fisiología , Nefropatías Diabéticas/metabolismo , Mesangio Glomerular/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , MicroARNs/metabolismo , NADPH Oxidasa 4/biosíntesis , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Proteínas Portadoras/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Mesangio Glomerular/patología , Glucosa/farmacología , Ratones Endogámicos C57BL , NADPH Oxidasa 4/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Proteínas/metabolismo , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta/farmacología , Ubiquitina-Proteína Ligasas
18.
Nat Commun ; 7: 12864, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27686049

RESUMEN

It is important to find better treatments for diabetic nephropathy (DN), a debilitating renal complication. Targeting early features of DN, including renal extracellular matrix accumulation (ECM) and glomerular hypertrophy, can prevent disease progression. Here we show that a megacluster of nearly 40 microRNAs and their host long non-coding RNA transcript (lnc-MGC) are coordinately increased in the glomeruli of mouse models of DN, and mesangial cells treated with transforming growth factor-ß1 (TGF- ß1) or high glucose. Lnc-MGC is regulated by an endoplasmic reticulum (ER) stress-related transcription factor, CHOP. Cluster microRNAs and lnc-MGC are decreased in diabetic Chop-/- mice that showed protection from DN. Target genes of megacluster microRNAs have functions related to protein synthesis and ER stress. A chemically modified oligonucleotide targeting lnc-MGC inhibits cluster microRNAs, glomerular ECM and hypertrophy in diabetic mice. Relevance to human DN is also demonstrated. These results demonstrate the translational implications of targeting lnc-MGC for controlling DN progression.

19.
Arterioscler Thromb Vasc Biol ; 36(5): 864-73, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26941017

RESUMEN

OBJECTIVE: Diabetes mellitus accelerates proatherogenic and proinflammatory phenotype of vascular smooth muscle cell (VSMC) associated with vascular complications. Evidence shows that microRNAs (miRNAs) play key roles in VSMC functions, but their role under diabetic conditions is unclear. We profiled miRNAs in VSMC from diabetic mice and examined their role in VSMC dysfunction. APPROACH AND RESULTS: High throughput small RNA-sequencing identified 135 differentially expressed miRNAs in VSMC from type 2 diabetic db/db mice (db/dbVSMC) versus nondiabetic db/+ mice. Several of these miRNAs were known to regulate VSMC functions. We further focused on miR-504, because it was highly upregulated in db/dbVSMC, and its function in VSMC is unknown. miR-504 and its host gene Fgf13 were significantly increased in db/dbVSMC and in aortas from db/db mice. Bioinformatics analysis predicted that miR-504 targets including signaling adaptor Grb10 and transcription factor Egr2 could regulate growth factor signaling. We experimentally validated Grb10 and Egr2 as novel targets of miR-504. Overexpression of miR-504 in VSMC inhibited contractile genes and enhanced extracellular signal-regulated kinase 1/2 activation, proliferation, and migration. These effects were blocked by miR-504 inhibitors. Grb10 knockdown mimicked miR-504 functions and increased inflammatory genes. Egr2 knockdown-inhibited anti-inflammatory Socs1 and increased proinflammatory genes. Furthermore, high glucose and palmitic acid upregulated miR-504 and inflammatory genes, but downregulated Grb10. CONCLUSIONS: Diabetes mellitus misregulates several miRNAs including miR-504 that can promote VSMC dysfunction. Because changes in many of these miRNAs are sustained in diabetic VSMC even after in vitro culture, they may be involved in metabolic memory of vascular complications. Targeting such mechanisms could offer novel therapeutic strategies for diabetic complications.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Angiopatías Diabéticas/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Biología Computacional , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/patología , Modelos Animales de Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Glucosa/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , MicroARNs/genética , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Ácido Palmítico/farmacología , Fenotipo , Interferencia de ARN , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Transfección
20.
Antioxid Redox Signal ; 24(7): 361-75, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26492974

RESUMEN

AIMS: Epigenetic mechanisms, including histone post-translational modifications and DNA methylation, are implicated in the pathogenesis of diabetic nephropathy (DN), but the mediators are not well known. Moreover, although dyslipidemia contributes to DN, epigenetic changes triggered by lipids are unclear. In diabetes, increased expression of 12/15-lipoxygenase (12/15-LO) enhances oxidized lipids such as 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], which promote oxidant stress, glomerular and mesangial cell (MC) dysfunction, and fibrosis, and mediate the actions of profibrotic growth factors. We hypothesized that 12/15-LO and its oxidized lipid products can regulate epigenetic mechanisms mediating profibrotic gene expression related to DN. RESULTS: 12(S)-HETE increased profibrotic gene expression and enrichment of permissive histone lysine modifications at their promoters in MCs. 12(S)-HETE also increased protein levels of SET7, a histone H3 lysine 4 methyltransferase, and promoted its nuclear translocation and enrichment at profibrotic gene promoters. Furthermore, SET7 (Setd7) gene silencing inhibited 12(S)-HETE-induced profibrotic gene expression. 12/15-LO (Alox15) gene silencing or genetic knockout inhibited transforming growth factor-ß1 (TGF-ß1)-induced expression of Setd7 and profibrotic genes and histone modifications in MCs. Furthermore, 12/15-LO knockout in mice ameliorated key features of DN and abrogated increases in renal SET7 and profibrotic genes. Additionally, 12/15-LO siRNAs in vivo blocked increases in renal SET7 and profibrotic genes in diabetic mice. INNOVATION AND CONCLUSION: These novel results demonstrate for the first time that 12/15-LO-derived oxidized lipids regulate histone modifications associated with profibrotic gene expression in MCs, and 12/15-LO can mediate similar actions of TGF-ß1 and diabetes. Targeting 12/15-LO might be a useful strategy to inhibit key epigenetic mechanisms involved in DN.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/genética , Metabolismo de los Lípidos , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Inmunoprecipitación de Cromatina , Diabetes Mellitus Experimental , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Fibrosis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacología , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Ratones , Ratones Noqueados , Oxidación-Reducción , Regiones Promotoras Genéticas , Ratas , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA