Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(11): 236, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906322

RESUMEN

KEY MESSAGE: Mating designs determine the realized additive genetic variance in a population sample. Deflated or inflated variances can lead to reduced or overly optimistic assessment of future selection gains. The additive genetic variance [Formula: see text] inherent to a breeding population is a major determinant of short- and long-term genetic gain. When estimated from experimental data, it is not only the additive variances at individual loci (QTL) but also covariances between QTL pairs that contribute to estimates of [Formula: see text]. Thus, estimates of [Formula: see text] depend on the genetic structure of the data source and vary between population samples. Here, we provide a theoretical framework for calculating the expectation and variance of [Formula: see text] from genotypic data of a given population sample. In addition, we simulated breeding populations derived from different numbers of parents (P = 2, 4, 8, 16) and crossed according to three different mating designs (disjoint, factorial and half-diallel crosses). We calculated the variance of [Formula: see text] and of the parameter b reflecting the covariance component in [Formula: see text] standardized by the genic variance. Our results show that mating designs resulting in large biparental families derived from few disjoint crosses carry a high risk of generating progenies exhibiting strong covariances between QTL pairs on different chromosomes. We discuss the consequences of the resulting deflated or inflated [Formula: see text] estimates for phenotypic and genome-based selection as well as for applying the usefulness criterion in selection. We show that already one round of recombination can effectively break negative and positive covariances between QTL pairs induced by the mating design. We suggest to obtain reliable estimates of [Formula: see text] and its components in a population sample by applying statistical methods differing in their treatment of QTL covariances.


Asunto(s)
Genética de Población , Fitomejoramiento , Humanos , Genotipo , Modelos Genéticos
2.
Phytochemistry ; 192: 112947, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34534712

RESUMEN

Plant specialised metabolites constitute a layer of chemical defence. Classes of the defence compounds are often restricted to a certain taxon of plants, e.g. benzoxazinoids (BX) are characteristically detected in grasses. BXs confer wide-range defence by controlling herbivores and microbial pathogens and are allelopathic compounds. In the crops maize, wheat and rye high concentrations of BXs are synthesised at an early developmental stage. By transfer of six Bx-genes (Bx1 to Bx5 and Bx8) it was possible to establish the biosynthesis of 2,4-dihydroxy-1,4-benzoxazin-3-one glucoside (GDIBOA) in a concentration of up to 143 nmol/g dry weight in Arabidopsis thaliana. Our results indicate that inefficient channeling of substrates along the pathway and metabolisation of intermediates in host plants might be a general drawback for transgenic establishment of specialised metabolite biosynthesis pathways. As a consequence, BX levels required for defence are not obtained in Arabidopsis. We could show that indolin-2-one (ION), the first specific intermediate, is phytotoxic and is metabolised by hydroxylation and glycosylation by a wide spectrum of plants. In Arabidopsis, metabolic stress due to the enrichment of ION leads to elevated levels of salicylic acid (SA) and in addition to its intrinsic phytotoxicity, ION affects plant morphology indirectly via SA. We could show that Bx3 has a crucial role in the evolution of the pathway, first based on its impact on flux into the pathway and, second by C3-hydroxylation of the phytotoxic ION. Thereby BX3 interferes with a supposedly generic detoxification system towards the non-specific intermediate.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Benzoxazinas , Poaceae , Triticum , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...