Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(3): e0283181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996021

RESUMEN

The ability of the cyclodextrin-oxime construct 6-OxP-CD to bind and degrade the nerve agents Cyclosarin (GF), Soman (GD) and S-[2-[Di(propan-2-yl)amino]ethyl] O-ethyl methylphosphonothioate (VX) has been studied using 31P-nuclear magnetic resonance (NMR) under physiological conditions. While 6-OxP-CD was found to degrade GF instantaneously under these conditions, it was found to form an inclusion complex with GD and significantly improve its degradation (t1/2 ~ 2 hrs) relative over background (t1/2 ~ 22 hrs). Consequently, effective formation of the 6-OxP-CD:GD inclusion complex results in the immediate neutralization of GD and thus preventing it from inhibiting its biological target. In contrast, NMR experiments did not find evidence for an inclusion complex between 6-OxP-CD and VX, and the agent's degradation profile was identical to that of background degradation (t1/2 ~ 24 hrs). As a complement to this experimental work, molecular dynamics (MD) simulations coupled with Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations have been applied to the study of inclusion complexes between 6-OxP-CD and the three nerve agents. These studies provide data that informs the understanding of the different degradative interactions exhibited by 6-OxP-CD with each nerve agent as it is introduced in the CD cavity in two different orientations (up and down). For its complex with GF, it was found that the oxime in 6-OxP-CD lies in very close proximity (PGF⋯OOxime ~ 4-5 Å) to the phosphorus center of GF in the 'downGF' orientation for most of the simulation accurately describing the ability of 6-OxP-CD to degrade this nerve agent rapidly and efficiently. Further computational studies involving the center of masses (COMs) for both components (GF and 6-OxP-CD) also provided some insight on the nature of this inclusion complex. Distances between the COMs (ΔCOM) lie closer in space in the 'downGF' orientation than in the 'upGF' orientation; a correlation that seems to hold true not only for GF but also for its congener, GD. In the case of GD, calculations for the 'downGD' orientation showed that the oxime functional group in 6-OxP-CD although lying in close proximity (PGD⋯OOxime ~ 4-5 Å) to the phosphorus center of the nerve agent for most of the simulation, adopts another stable conformation that increase this distance to ~ 12-14 Å, thus explaining the ability of 6-OxP-CD to bind and degrade GD but with less efficiency as observed experimentally (t1/2 ~ 4 hr. vs. immediate). Lastly, studies on the VX:6-OxP-CD system demonstrated that VX does not form a stable inclusion complex with the oxime-bearing cyclodextrin and as such does not interact in a way that is conducive to an accelerated degradation scenario. Collectively, these studies serve as a basic platform from which the development of new cyclodextrin scaffolds based on 6-OxP-CD can be designed in the development of medical countermeasures against these highly toxic chemical warfare agents.


Asunto(s)
Sustancias para la Guerra Química , Ciclodextrinas , Contramedidas Médicas , Agentes Nerviosos , Soman , Oximas , Simulación de Dinámica Molecular , Compuestos Organofosforados/química , Fósforo
2.
Front Immunol ; 12: 716676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659206

RESUMEN

Peptide-based subunit vaccines are coming to the forefront of current vaccine approaches, with safety and cost-effective production among their top advantages. Peptide vaccine formulations consist of multiple synthetic linear epitopes that together trigger desired immune responses that can result in robust immune memory. The advantages of linear compared to conformational epitopes are their simple structure, ease of synthesis, and ability to stimulate immune responses by means that do not require complex 3D conformation. Prediction of linear epitopes through use of computational tools is fast and cost-effective, but typically of low accuracy, necessitating extensive experimentation to verify results. On the other hand, identification of linear epitopes through experimental screening has been an inefficient process that requires thorough characterization of previously identified full-length protein antigens, or laborious techniques involving genetic manipulation of organisms. In this study, we apply a newly developed generalizable screening method that enables efficient identification of B-cell epitopes in the proteomes of pathogenic bacteria. As a test case, we used this method to identify epitopes in the proteome of Francisella tularensis (Ft), a Select Agent with a well-characterized immunoproteome. Our screen identified many peptides that map to known antigens, including verified and predicted outer membrane proteins and extracellular proteins, validating the utility of this approach. We then used the method to identify seroreactive peptides in the less characterized immunoproteome of Select Agent Burkholderia pseudomallei (Bp). This screen revealed known Bp antigens as well as proteins that have not been previously identified as antigens. Although B-cell epitope prediction tools Bepipred 2.0 and iBCE-EL classified many of our seroreactive peptides as epitopes, they did not score them significantly higher than the non-reactive tryptic peptides in our study, nor did they assign higher scores to seroreactive peptides from known Ft or Bp antigens, highlighting the need for experimental data instead of relying on computational epitope predictions alone. The present workflow is easily adaptable to detecting peptide targets relevant to the immune systems of other mammalian species, including humans (depending upon the availability of convalescent sera from patients), and could aid in accelerating the discovery of B-cell epitopes and development of vaccines to counter emerging biological threats.


Asunto(s)
Mapeo Epitopo/métodos , Epítopos de Linfocito B/inmunología , Proteoma , Proteómica , Animales , Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Biología Computacional/métodos , Francisella tularensis/inmunología , Humanos , Inmunización , Ratones , Péptidos/inmunología , Proteómica/métodos , Vacunas de Subunidad/inmunología
3.
Front Mol Biosci ; 8: 678701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327214

RESUMEN

A rapid response is necessary to contain emergent biological outbreaks before they can become pandemics. The novel coronavirus (SARS-CoV-2) that causes COVID-19 was first reported in December of 2019 in Wuhan, China and reached most corners of the globe in less than two months. In just over a year since the initial infections, COVID-19 infected almost 100 million people worldwide. Although similar to SARS-CoV and MERS-CoV, SARS-CoV-2 has resisted treatments that are effective against other coronaviruses. Crystal structures of two SARS-CoV-2 proteins, spike protein and main protease, have been reported and can serve as targets for studies in neutralizing this threat. We have employed molecular docking, molecular dynamics simulations, and machine learning to identify from a library of 26 million molecules possible candidate compounds that may attenuate or neutralize the effects of this virus. The viability of selected candidate compounds against SARS-CoV-2 was determined experimentally by biolayer interferometry and FRET-based activity protein assays along with virus-based assays. In the pseudovirus assay, imatinib and lapatinib had IC50 values below 10 µM, while candesartan cilexetil had an IC50 value of approximately 67 µM against Mpro in a FRET-based activity assay. Comparatively, candesartan cilexetil had the highest selectivity index of all compounds tested as its half-maximal cytotoxicity concentration 50 (CC50) value was the only one greater than the limit of the assay (>100 µM).

4.
Sci Rep ; 11(1): 15567, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330964

RESUMEN

Nerve agents have experienced a resurgence in recent times with their use against civilian targets during the attacks in Syria (2012), the poisoning of Sergei and Yulia Skripal in the United Kingdom (2018) and Alexei Navalny in Russia (2020), strongly renewing the importance of antidote development against these lethal substances. The current standard treatment against their effects relies on the use of small molecule-based oximes that can efficiently restore acetylcholinesterase (AChE) activity. Despite their efficacy in reactivating AChE, the action of drugs like 2-pralidoxime (2-PAM) is primarily limited to the peripheral nervous system (PNS) and, thus, provides no significant protection to the central nervous system (CNS). This lack of action in the CNS stems from their ionic nature that, on one end makes them very powerful reactivators and on the other renders them ineffective at crossing the Blood Brain Barrier (BBB) to reach the CNS. In this report, we describe the use of an iterative approach composed of parallel chemical and in silico syntheses, computational modeling, and a battery of detailed in vitro and in vivo assays that resulted in the identification of a promising, novel CNS-permeable oxime reactivator. Additional experiments to determine acute and chronic toxicity are ongoing.


Asunto(s)
Sistema Nervioso Central/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Cobayas , Masculino , Compuestos de Pralidoxima/farmacología
5.
Clin Pharmacol Ther ; 109(3): 578-590, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33113208

RESUMEN

The only medication available currently to prevent and treat opioid overdose (naloxone) was approved by the US Food and Drug Administration (FDA) nearly 50 years ago. Because of its pharmacokinetic and pharmacodynamic properties, naloxone has limited utility under some conditions and would not be effective to counteract mass casualties involving large-scale deployment of weaponized synthetic opioids. To address shortcomings of current medical countermeasures for opioid toxicity, a trans-agency scientific meeting was convened by the US National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIAID/NIH) on August 6 and 7, 2019, to explore emerging alternative approaches for treating opioid overdose in the event of weaponization of synthetic opioids. The meeting was initiated by the Chemical Countermeasures Research Program (CCRP), was organized by NIAID, and was a collaboration with the National Institute on Drug Abuse/NIH (NIDA/NIH), the FDA, the Defense Threat Reduction Agency (DTRA), and the Biomedical Advanced Research and Development Authority (BARDA). This paper provides an overview of several presentations at that meeting that discussed emerging new approaches for treating opioid overdose, including the following: (1) intranasal nalmefene, a competitive, reversible opioid receptor antagonist with a longer duration of action than naloxone; (2) methocinnamox, a novel opioid receptor antagonist; (3) covalent naloxone nanoparticles; (4) serotonin (5-HT)1A receptor agonists; (5) fentanyl-binding cyclodextrin scaffolds; (6) detoxifying biomimetic "nanosponge" decoy receptors; and (7) antibody-based strategies. These approaches could also be applied to treat opioid use disorder.


Asunto(s)
Analgésicos Opioides/efectos adversos , Sobredosis de Droga/terapia , Contramedidas Médicas , Naloxona/uso terapéutico , Antagonistas de Narcóticos/uso terapéutico , Epidemia de Opioides , Trastornos Relacionados con Opioides/terapia , Animales , Congresos como Asunto , Sobredosis de Droga/etiología , Sobredosis de Droga/mortalidad , Humanos , Naloxona/efectos adversos , Antagonistas de Narcóticos/efectos adversos , Epidemia de Opioides/mortalidad , Trastornos Relacionados con Opioides/complicaciones , Trastornos Relacionados con Opioides/mortalidad , Pronóstico , Medición de Riesgo , Factores de Riesgo
6.
Viruses ; 12(11)2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198111

RESUMEN

The 2014-2016 Zika virus (ZIKV) epidemic in the Americas resulted in large deposits of next-generation sequencing data from clinical samples. This resource was mined to identify emerging mutations and trends in mutations as the outbreak progressed over time. Information on transmission dynamics, prevalence, and persistence of intra-host mutants, and the position of a mutation on a protein were then used to prioritize 544 reported mutations based on their ability to impact ZIKV phenotype. Using this criteria, six mutants (representing naturally occurring mutations) were generated as synthetic infectious clones using a 2015 Puerto Rican epidemic strain PRVABC59 as the parental backbone. The phenotypes of these naturally occurring variants were examined using both cell culture and murine model systems. Mutants had distinct phenotypes, including changes in replication rate, embryo death, and decreased head size. In particular, a NS2B mutant previously detected during in vivo studies in rhesus macaques was found to cause lethal infections in adult mice, abortions in pregnant females, and increased viral genome copies in both brain tissue and blood of female mice. Additionally, mutants with changes in the region of NS3 that interfaces with NS5 during replication displayed reduced replication in the blood of adult mice. This analytical pathway, integrating both bioinformatic and wet lab experiments, provides a foundation for understanding how naturally occurring single mutations affect disease outcome and can be used to predict the of severity of future ZIKV outbreaks. To determine if naturally occurring individual mutations in the Zika virus epidemic genotype affect viral virulence or replication rate in vitro or in vivo, we generated an infectious clone representing the epidemic genotype of stain Puerto Rico, 2015. Using this clone, six mutants were created by changing nucleotides in the genome to cause one to two amino acid substitutions in the encoded proteins. The six mutants we generated represent mutations that differentiated the early epidemic genotype from genotypes that were either ancestral or that occurred later in the epidemic. We assayed each mutant for changes in growth rate, and for virulence in adult mice and pregnant mice. Three of the mutants caused catastrophic embryo effects including increased embryonic death or significant decrease in head diameter. Three other mutants that had mutations in a genome region associated with replication resulted in changes in in vitro and in vivo replication rates. These results illustrate the potential impact of individual mutations in viral phenotype.


Asunto(s)
Sustitución de Aminoácidos , Genoma Viral , Mutación , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Genotipo , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Especificidad de Órganos , Células Vero , Virulencia , Replicación Viral , Infección por el Virus Zika/complicaciones
7.
Clin Colon Rectal Surg ; 31(6): 336-346, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30450017

RESUMEN

High-resolution anoscopy (HRA) is a form of low-resolution anal microscopy currently utilized in the screening and management of anal squamous dysplasia. No randomized controlled trials, national or international guidelines exist on the use of HRA for this purpose. Much of our understanding of this entity has been adapted from the literature on cervical squamous dysplasia, including the technique of HRA itself. Epidemiologic evidence has shown that the prevalence and incidence of anal dysplasia is highest in HIV-positive populations. The history of this technique parallels the evolution of our understanding of anal dysplasia. To understand the history of the use of HRA and its place in the screening and management of anal squamous dysplasia, we discuss key advances in the understanding of human papillomavirus-related squamous dysplasia. We begin with early reports in the field establishing the link between this virus and squamous dysplasia, through the marked increase in anal cancer seen with the onset of the HIV epidemic, the identification of relevant populations at risk, the performance of the test itself, to its use today.

8.
Chem Biol Interact ; 277: 159-167, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28941624

RESUMEN

Organophosphorus-based (OP) nerve agents represent some of the most toxic substances known to mankind. The current standard of care for exposure has changed very little in the past decades, and relies on a combination of atropine to block receptor activity and oxime-type acetylcholinesterase (AChE) reactivators to reverse the OP binding to AChE. Although these oximes can block the effects of nerve agents, their overall efficacy is reduced by their limited capacity to cross the blood-brain barrier (BBB). RS194B, a new oxime developed by Radic et al. (J. Biol. Chem., 2012) has shown promise for enhanced ability to cross the BBB. To fully assess the potential of this compound as an effective treatment for nerve agent poisoning, a comprehensive evaluation of its pharmacokinetic (PK) and biodistribution profiles was performed using both intravenous and intramuscular exposure routes. The ultra-sensitive technique of accelerator mass spectrometry was used to quantify the compound's PK profile, tissue distribution, and brain/plasma ratio at four dose concentrations in guinea pigs. PK analysis revealed a rapid distribution of the oxime with a plasma t1/2 of ∼1 h. Kidney and liver had the highest concentrations per gram of tissue followed by lung, spleen, heart and brain for all dose concentrations tested. The Cmax in the brain ranged between 0.03 and 0.18% of the administered dose, and the brain-to-plasma ratio ranged from 0.04 at the 10 mg/kg dose to 0.18 at the 200 mg/kg dose demonstrating dose dependent differences in brain and plasma concentrations. In vitro studies show that both passive diffusion and active transport contribute little to RS194B traversal of the BBB. These results indicate that biodistribution is widespread, but very low quantities accumulate in the guinea pig brain, indicating this compound may not be suitable as a centrally active reactivator.


Asunto(s)
Acetamidas/farmacocinética , Reactivadores de la Colinesterasa/farmacocinética , Oximas/farmacocinética , Acetamidas/administración & dosificación , Acetilcolinesterasa/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Reactivadores de la Colinesterasa/administración & dosificación , Cobayas , Riñón/metabolismo , Masculino , Oximas/administración & dosificación , Oximas/metabolismo , Distribución Tisular
9.
PLoS One ; 12(8): e0181996, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28792966

RESUMEN

Triclocarban (TCC) is among the top 10 most commonly detected wastewater contaminants in both concentration and frequency. Its presence in water, as well as its propensity to bioaccumulate, has raised numerous questions about potential endocrine and developmental effects. Here, we investigated whether exposure to an environmentally relevant concentration of TCC could result in transfer from mother to offspring in CD-1 mice during gestation and lactation using accelerator mass spectrometry (AMS). 14C-TCC (100 nM) was administered to dams through drinking water up to gestation day 18, or from birth to post-natal day 10. AMS was used to quantify 14C-concentrations in offspring and dams after exposure. We demonstrated that TCC does effectively transfer from mother to offspring, both trans-placentally and via lactation. TCC-related compounds were detected in the tissues of offspring with significantly higher concentrations in the brain, heart and fat. In addition to transfer from mother to offspring, exposed offspring were heavier in weight than unexposed controls demonstrating an 11% and 8.5% increase in body weight for females and males, respectively. Quantitative real-time polymerase chain reaction (qPCR) was used to examine changes in gene expression in liver and adipose tissue in exposed offspring. qPCR suggested alterations in genes involved in lipid metabolism in exposed female offspring, which was consistent with the observed increased fat pad weights and hepatic triglycerides. This study represents the first report to quantify the transfer of an environmentally relevant concentration of TCC from mother to offspring in the mouse model and evaluate bio-distribution after exposure using AMS. Our findings suggest that early-life exposure to TCC may interfere with lipid metabolism and could have implications for human health.


Asunto(s)
Carbanilidas/toxicidad , Regulación de la Expresión Génica/genética , Metabolismo de los Lípidos/efectos de los fármacos , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/patología , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Expresión Génica , Hígado/metabolismo , Masculino , Ratones , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Aguas Residuales/química , Aguas Residuales/toxicidad
10.
J Phys Chem B ; 121(20): 5228-5237, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28453293

RESUMEN

Membrane permeability is a key property to consider during the drug design process, and particularly vital when dealing with small molecules that have intracellular targets as their efficacy highly depends on their ability to cross the membrane. In this work, we describe the use of umbrella sampling molecular dynamics (MD) computational modeling to comprehensively assess the passive permeability profile of a range of compounds through a lipid bilayer. The model was initially calibrated through in vitro validation studies employing a parallel artificial membrane permeability assay (PAMPA). The model was subsequently evaluated for its quantitative prediction of permeability profiles for a series of custom synthesized and closely related compounds. The results exhibited substantially improved agreement with the PAMPA data, relative to alternative existing methods. Our work introduces a computational model that underwent progressive molding and fine-tuning as a result of its synergistic collaboration with numerous in vitro PAMPA permeability assays. The presented computational model introduces itself as a useful, predictive tool for permeability prediction.


Asunto(s)
Permeabilidad de la Membrana Celular , Simulación de Dinámica Molecular , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Difusión , Diseño de Fármacos , Humanos , Membrana Dobles de Lípidos/química , Preparaciones Farmacéuticas/síntesis química , Teoría Cuántica , Reproducibilidad de los Resultados
12.
Clin Cancer Res ; 22(18): 4612-22, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27121793

RESUMEN

PURPOSE: WRN promoter CpG island hypermethylation in colorectal cancer has been reported to increase sensitivity to irinotecan-based therapies. We aimed to characterize methylation of the WRN promoter, determine the effect of WRN promoter hypermethylation upon expression, and validate a previous report that WRN promoter hypermethylation predicts improved outcomes for patients with metastatic colorectal cancer (mCRC) treated with irinotecan-based therapy. EXPERIMENTAL DESIGN: WRN methylation status was assessed using methylation-specific PCR and bisulfite sequencing assays. WRN expression was determined using qRT-PCR and Western blotting. WRN methylation status was correlated with overall survival (OS) and progression-free survival (PFS) in 183 patients with mCRC. Among these patients, 90 received capecitabine monotherapy as first-line therapy, and 93 received capecitabine plus irinotecan (CAPIRI) therapy as part of the CAIRO phase III clinical trial. RESULTS: WRN mRNA and WRN protein expression levels were low in colorectal cancer cell lines and in primary colorectal cancer and were largely independent of WRN methylation status. Patients with methylated WRN colorectal cancer had a shorter OS compared with patients who had unmethylated WRN colorectal cancer (HR = 1.6; 95% confidence interval [CI], 1.2-2.2; P = 0.003). Patients with unmethylated WRN showed a significantly longer PFS when treated with CAPIRI compared with capecitabine alone (HR = 0.48; 95% CI, 0.32-0.70; P = 0.0001). In contrast, patients did not benefit from adding irinotecan to capecitabine when WRN was methylated (HR = 1.1; 95% CI, 0.69-1.77; P = 0.7). CONCLUSIONS: WRN expression is largely independent of WRN promoter hypermethylation in colorectal cancer. Moreover, we could not validate the previous finding that WRN promoter hypermethylation predicts improved clinical outcomes of mCRC treated with irinotecan-based therapy and found instead the opposite result. Clin Cancer Res; 22(18); 4612-22. ©2016 AACR.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Islas de CpG , Metilación de ADN , Regiones Promotoras Genéticas , Helicasa del Síndrome de Werner/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Expresión Génica , Humanos , Irinotecán , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales
13.
PLoS One ; 11(1): e0146251, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26790002

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen related to SARS virus. In vitro studies indicate this virus may have a broad host range suggesting an increased pandemic potential. Genetic and epidemiological evidence indicate camels serve as a reservoir for MERS virus but the mechanism of cross species transmission is unclear and many questions remain regarding the susceptibility of humans to infection. Deep sequencing data was obtained from the nasal samples of three camels that had been experimentally infected with a human MERS-CoV isolate. A majority of the genome was covered and average coverage was greater than 12,000x depth. Although only 5 mutations were detected in the consensus sequences, 473 intrahost single nucleotide variants were identified. Many of these variants were present at high frequencies and could potentially influence viral phenotype and the sensitivity of detection assays that target these regions for primer or probe binding.


Asunto(s)
Infecciones por Coronavirus/genética , Infecciones por Coronavirus/transmisión , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mutación , Animales , Camelus , Chlorocebus aethiops , Humanos , Células Vero
14.
PLoS One ; 9(10): e108483, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25310185

RESUMEN

PURPOSE: Colon cancers deficient in mismatch repair (MMR) may exhibit diminished expression of the DNA repair gene, MRE11, as a consequence of contraction of a T11 mononucleotide tract. This study investigated MRE11 status and its association with prognosis, survival and drug response in patients with stage III colon cancer. PATIENTS AND METHODS: Cancer and Leukemia Group B 89803 (Alliance) randomly assigned 1,264 patients with stage III colon cancer to postoperative weekly adjuvant bolus 5-fluorouracil/leucovorin (FU/LV) or irinotecan+FU/LV (IFL), with 8 year follow-up. Tumors from these patients were analyzed to determine stability of a T11 tract in the MRE11 gene. The primary endpoint was overall survival (OS), and a secondary endpoint was disease-free survival (DFS). Non-proportional hazards were addressed using time-dependent covariates in Cox analyses. RESULTS: Of 625 tumor cases examined, 70 (11.2%) exhibited contraction at the T11 tract in one or both MRE11 alleles and were thus predicted to be deficient in MRE11 (dMRE11). In pooled treatment analyses, dMRE11 patients showed initially reduced DFS and OS but improved long-term DFS and OS compared with patients with an intact MRE11 T11 tract. In the subgroup of dMRE11 patients treated with IFL, an unexplained early increase in mortality but better long-term DFS than IFL-treated pMRE11 patients was observed. CONCLUSIONS: Analysis of this relatively small number of patients and events showed that the dMRE11 marker predicts better prognosis independent of treatment in the long-term. In subgroup analyses, dMRE11 patients treated with irinotecan exhibited unexplained short-term mortality. MRE11 status is readily assayed and may therefore prove to be a useful prognostic marker, provided that the results reported here for a relatively small number of patients can be generalized in independent analyses of larger numbers of samples. TRIAL REGISTRATION: ClinicalTrials.gov NCT00003835.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Proteínas de Unión al ADN/genética , Adulto , Anciano , Anciano de 80 o más Años , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Supervivencia sin Enfermedad , Femenino , Fluorouracilo/administración & dosificación , Fluorouracilo/uso terapéutico , Estudios de Seguimiento , Estudios de Asociación Genética , Humanos , Irinotecán , Leucovorina/administración & dosificación , Leucovorina/uso terapéutico , Proteína Homóloga de MRE11 , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Pronóstico , Resultado del Tratamiento , Adulto Joven
15.
Antimicrob Agents Chemother ; 58(11): 6477-83, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25136019

RESUMEN

Determining the pharmacokinetics (PKs) of drug candidates is essential for understanding their biological fate. The ability to obtain human PK information early in the drug development process can help determine if future development is warranted. Microdosing was developed to assess human PKs, at ultra-low doses, early in the drug development process. Microdosing has also been used in animals to confirm PK linearity across subpharmacological and pharmacological dose ranges. The current study assessed the PKs of a novel antimicrobial preclinical drug candidate (GP-4) in rats as a step toward human microdosing studies. Dose proportionality was determined at 3 proposed therapeutic doses (3, 10, and 30 mg/kg of body weight), and PK linearity between a microdose and a pharmacological dose was assessed in Sprague-Dawley rats. Plasma PKs over the 3 pharmacological doses were proportional. Over the 10-fold dose range, the maximum concentration in plasma and area under the curve (AUC) increased 9.5- and 15.8-fold, respectively. PKs from rats dosed with a (14)C-labeled microdose versus a (14)C-labeled pharmacological dose displayed dose linearity. In the animals receiving a microdose and the therapeutically dosed animals, the AUCs from time zero to infinity were 2.6 ng · h/ml and 1,336 ng · h/ml, respectively, and the terminal half-lives were 5.6 h and 1.4 h, respectively. When the AUC values were normalized to a dose of 1.0 mg/kg, the AUC values were 277.5 ng · h/ml for the microdose and 418.2 ng · h/ml for the pharmacological dose. This 1.5-fold difference in AUC following a 300-fold difference in dose is considered linear across the dose range. On the basis of the results, the PKs from the microdosed animals were considered to be predictive of the PKs from the therapeutically dosed animals.


Asunto(s)
Girasa de ADN/efectos de los fármacos , Topoisomerasa de ADN IV/antagonistas & inhibidores , Guanidinas/farmacocinética , Piperazinas/farmacocinética , Inhibidores de Topoisomerasa II/farmacocinética , Animales , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Masculino , Espectrometría de Masas , Ratas , Ratas Sprague-Dawley
16.
Gastroenterology ; 147(3): 637-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24859205

RESUMEN

BACKGROUND & AIMS: The CpG island methylator phenotype (CIMP), defined by a high frequency of aberrantly methylated genes, is a characteristic of a subclass of colon tumors with distinct clinical and molecular features. Cohort studies have produced conflicting results on responses of CIMP-positive tumors to chemotherapy. We assessed the association between tumor CIMP status and survival of patients receiving adjuvant fluorouracil and leucovorin alone or with irinotecan (IFL). METHODS: We analyzed data from patients with stage III colon adenocarcinoma randomly assigned to groups given fluorouracil and leucovorin or IFL after surgery, from April 1999 through April 2001. The primary end point of the trial was overall survival and the secondary end point was disease-free survival. DNA isolated from available tumor samples (n = 615) was used to determine CIMP status based on methylation patterns at the CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1 loci. The effects of CIMP on survival were modeled using Kaplan-Meier and Cox proportional hazards; interactions with treatment and BRAF, KRAS, and mismatch repair (MMR) status were also investigated. RESULTS: Of the tumor samples characterized for CIMP status, 145 were CIMP positive (23%). Patients with CIMP-positive tumors had shorter overall survival times than patients with CIMP-negative tumors (hazard ratio = 1.36; 95% confidence interval: 1.01-1.84). Treatment with IFL showed a trend toward increased overall survival for patients with CIMP-positive tumors, compared with treatment with fluorouracil and leucovorin (hazard ratio = 0.62; 95% CI: 0.37-1.05; P = .07), but not for patients with CIMP-negative tumors (hazard ratio = 1.38; 95% CI: 1.00-1.89; P = .049). In a 3-way interaction analysis, patients with CIMP-positive, MMR-intact tumors benefited most from the addition of irinotecan to fluorouracil and leucovorin therapy (for the interaction, P = .01). CIMP was more strongly associated with response to IFL than MMR status. Results for disease-free survival times were comparable among all analyses. CONCLUSIONS: Patients with stage III, CIMP-positive, MMR-intact colon tumors have longer survival times when irinotecan is added to combination therapy with fluorouracil and leucovorin.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Islas de CpG , Metilación de ADN , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Quimioterapia Adyuvante , Colectomía , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Reparación de la Incompatibilidad de ADN , Supervivencia sin Enfermedad , Femenino , Fluorouracilo/administración & dosificación , Humanos , Irinotecán , Estimación de Kaplan-Meier , Leucovorina/administración & dosificación , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Fenotipo , Modelos de Riesgos Proporcionales , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
17.
PLoS Negl Trop Dis ; 7(11): e2555, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24278493

RESUMEN

One of the hurdles to understanding the role of viral quasispecies in RNA virus cross-species transmission (CST) events is the need to analyze a densely sampled outbreak using deep sequencing in order to measure the amount of mutation occurring on a small time scale. In 2009, the California Department of Public Health reported a dramatic increase (350) in the number of gray foxes infected with a rabies virus variant for which striped skunks serve as a reservoir host in Humboldt County. To better understand the evolution of rabies, deep-sequencing was applied to 40 unpassaged rabies virus samples from the Humboldt outbreak. For each sample, approximately 11 kb of the 12 kb genome was amplified and sequenced using the Illumina platform. Average coverage was 17,448 and this allowed characterization of the rabies virus population present in each sample at unprecedented depths. Phylogenetic analysis of the consensus sequence data demonstrated that samples clustered according to date (1995 vs. 2009) and geographic location (northern vs. southern). A single amino acid change in the G protein distinguished a subset of northern foxes from a haplotype present in both foxes and skunks, suggesting this mutation may have played a role in the observed increased transmission among foxes in this region. Deep-sequencing data indicated that many genetic changes associated with the CST event occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 20032010 were present at the sub-consensus level (as rare variants in the viral population) in skunk and fox samples from 1995. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral genomes and identify rare variants that have the potential to be selected for if environment conditions change.


Asunto(s)
Variación Genética , Virus de la Rabia/clasificación , Virus de la Rabia/genética , Rabia/veterinaria , Animales , Antígenos Virales/genética , California/epidemiología , Análisis por Conglomerados , Brotes de Enfermedades , Evolución Molecular , Zorros , Glicoproteínas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mephitidae , Epidemiología Molecular , Mutación Missense , Filogenia , Rabia/epidemiología , Rabia/transmisión , Rabia/virología , Virus de la Rabia/aislamiento & purificación , Homología de Secuencia , Proteínas del Envoltorio Viral/genética
18.
J Laparoendosc Adv Surg Tech A ; 23(9): 808-13, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23937143

RESUMEN

BACKGROUND: Minimally invasive repairs of pediatric diaphragm eventration have been well described via a thoracoscopic approach, oftentimes requiring single-lung ventilation and tube thoracostomy, with the disadvantage of not being able to clearly visualize what lies beneath the diaphragm. We describe a novel pediatric diaphragm eventration repair using a laparoscopic transperitoneal approach and an endostapler device. We also describe our initial experience with this technique. PATIENTS AND METHODS: Four pediatric diaphragmatic eventration patients underwent laparoscopic transperitoneal repair using an endostapler device. Repairs were performed in both male and female patients with right-sided eventrations. We approach the repair in a transperitoneal fashion using inverting sutures at the apex of the diaphragm to create tension toward the pelvis. Subsequently, an endostapler is used to remove the redundant portion of diaphragm, leaving a repaired, taut diaphragm. RESULTS: The median age at operation was 10.5 months. The median operative time was 70 minutes. There was no mortality, surgical complications, or recurrence at a median follow-up of 17 months. CONCLUSIONS: This laparoscopic approach allows for clear visualization of the intraabdominal organs and, at least in our early experience, a very simple, straightforward operation. Additionally, with the use of the endostapler, the redundant, often weakened diaphragm is removed, leaving the native, healthy diaphragm behind, resulting in a reliable and reproducible repair. This repair should be considered as a feasible alternative approach to the more traditional open and thoracoscopic repairs.


Asunto(s)
Eventración Diafragmática/cirugía , Laparoscopía/métodos , Peritoneo/cirugía , Grapado Quirúrgico/instrumentación , Niño , Diafragma/cirugía , Femenino , Humanos , Lactante , Masculino , Procedimientos Quirúrgicos Mínimamente Invasivos , Tempo Operativo , Grapado Quirúrgico/métodos
19.
Transl Oncol ; 6(4): 458-69, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23908689

RESUMEN

Deregulation of DNA repair enzymes occurs in cancers and may create a susceptibility to chemotherapy. Expression levels of DNA repair enzymes have been shown to predict the responsiveness of cancers to certain chemotherapeutic agents. The RECQ helicases repair damaged DNA including damage caused by topoisomerase I inhibitors, such as irinotecan. Altered expression levels of these enzymes in colorectal cancer (CRC) may influence the response of the cancers to irinotecan. Thus, we assessed RECQ helicase (WRN, BLM, RECQL, RECQL4, and RECQL5) expression in primary CRCs, matched normal colon, and CRC cell lines. We found that BLM and RECQL4 mRNA levels are significantly increased in CRC (P = .0011 and P < .0001, respectively), whereas RECQL and RECQL5 are significantly decreased (P = .0103 and P = .0029, respectively). RECQ helicase expression patterns varied between specific molecular subtypes of CRCs. The mRNA and protein expression of the majority of the RECQ helicases was closely correlated, suggesting that altered mRNA expression is the predominant mechanism for deregulated RECQ helicase expression. Immunohistochemistry localized the RECQ helicases to the nucleus. RECQ helicase expression is altered in CRC, suggesting that RECQ helicase expression has potential to identify CRCs that are susceptible to specific chemotherapeutic agents.

20.
Nat Rev Gastroenterol Hepatol ; 8(12): 686-700, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22009203

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. It results from an accumulation of genetic and epigenetic changes in colon epithelial cells, which transforms them into adenocarcinomas. Over the past decade, major advances have been made in understanding cancer epigenetics, particularly regarding aberrant DNA methylation. Assessment of the colon cancer epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has hundreds to thousands of abnormally methylated genes. As with gene mutations in the cancer genome, a subset of these methylated genes, called driver genes, is presumed to have a functional role in CRC. The assessment of methylated genes in CRCs has also revealed a unique molecular subgroup of CRCs called CpG island methylator phenotype (CIMP) cancers; these tumors have a particularly high frequency of methylated genes. These advances in our understanding of aberrant methylation in CRC have led to epigenetic alterations being developed as clinical biomarkers for diagnostic, prognostic and therapeutic applications. Progress in this field suggests that these epigenetic alterations will be commonly used in the near future to direct the prevention and treatment of CRC.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales , ADN de Neoplasias/genética , Epigenómica/métodos , Biomarcadores de Tumor/biosíntesis , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Salud Global , Humanos , Tasa de Supervivencia/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...