Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Funct ; 15(7): 3600-3614, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38469889

RESUMEN

Food ingredients have critical effects on the maturation and development of the immune system, which innate - lymphoid (ILCs) and myeloid - cells play key roles as important regulators of energy storage and hepatic fat accumulation. Therefore, the objective of this study is to define potential links between a dietary immunonutritional induction of the selective functional differentiation of monocytes-derived macrophages, ILCs and lipid homeostasis in hepatocarcinoma (HCC)-developing mice. Hepatic chemically injured (diethylnitrosamine/thiacetamide) Rag2-/- and Rag2-/-Il2-/- mice were administered with serine-type protease inhibitors (SETIs) obtained from Chenopodium quinoa. Early HCC-driven immunometabolic imbalances (infiltrated macrophages, glucose homeostasis, hepatic lipid profile, ILCs expansion, inflammatory conditions, microbiota) in animals put under a high-fat diet for 2 weeks were assessed. It was also approached the potential of SETIs to cause functional adaptations of the bioenergetics of human macrophage-like cells (hMLCs) in vitro conditioning their capacity to accumulate fat. It is showed that Rag2-/-Il2-/- mice, lacking ILCs, are resistant to the SETIs-induced hepatic macrophages (CD68+F4/80+) activation. Feeding SETIs to Rag2-/- mice, carrying ILCs, promoted the expansion towards ILC3s (CD117+Nkp46+CD56+) and reduced that of ILC2s (CD117+KLRG1+) into livers. In vitro studies demonstrate that hMLCs, challenged to SETIs, develop a similar phenotype of that found in mice and bioenergetic adaptations leading to increased lipolysis. It is concluded that SETIs promote liver macrophage activation and ILCs adaptations to ameliorate HCC-driven immunometabolic imbalances.


Asunto(s)
Carcinoma Hepatocelular , Chenopodium quinoa , Neoplasias Hepáticas , Ratones , Humanos , Animales , Inmunidad Innata , Linfocitos , Interleucina-2 , Inhibidores de Serina Proteinasa , Neoplasias Hepáticas/tratamiento farmacológico , Lípidos , Serina
2.
Biomedicines ; 12(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397943

RESUMEN

Nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface between immunity and metabolism. Dietary factors constitute critical players in the activation of innate immunity and modulation of the gut microbiota. The latter have been involved in worsening or improving the control and promotion of diseases such as obesity, type 2 diabetes, metabolic syndrome, diseases known as non-communicable metabolic diseases (NCDs), and the risk of developing cancer. Intracellular NODs play key coordinated actions with innate immune 'Toll-like' receptors leading to a diverse array of gene expressions that initiate inflammatory and immune responses. There has been an improvement in the understanding of the molecular and genetic implications of these receptors in, among others, such aspects as resting energy expenditure, insulin resistance, and cell proliferation. Genetic factors and polymorphisms of the receptors are determinants of the risk and severity of NCDs and cancer, and it is conceivable that dietary factors may have significant differential consequences depending on them. Host factors are difficult to influence, while environmental factors are predominant and approachable with a preventive and/or therapeutic intention in obesity, T2D, and cancer. However, beyond the recognition of the activation of NODs by peptidoglycan as its prototypical agonist, the underlying molecular response(s) and its consequences on these diseases remain ill-defined. Metabolic (re)programming is a hallmark of NCDs and cancer in which nutritional strategies might play a key role in preventing the unprecedented expansion of these diseases. A better understanding of the participation and effects of immunonutritional dietary ingredients can boost integrative knowledge fostering interdisciplinary science between nutritional precision and personalized medicine against cancer. This review summarizes the current evidence concerning the relationship(s) and consequences of NODs on immune and metabolic health.

3.
Foods ; 12(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37685253

RESUMEN

This study explored the effects of Chenopodium quinoa's ingredients on the major lipids' hepatic profile and the functional selective differentiation of monocyte-derived macrophages and innate lymphoid cells in mice on a high-fat diet. Six-week-old Rag2-/- and Rag2-/-Il2-/- mice received (12 days) a low-molecular-weight protein fraction (LWPF) or the lipid fraction (qLF) obtained from the cold pressing of C. quinoa's germen. At the end of the experiment, mouse serum and liver tissue were collected. The differences in triglycerides, phospholipids, and the major lipids profile were analyzed. Infiltrated monocyte-derived macrophages and innate lymphoid cells (ILCs) and the expression of liver metabolic stress-related mRNA were measured. In the Rag2-/- mice, feeding them LWPF appeared to improve, to a larger extent, their hepatic capacity to utilize fatty acids in comparison to the qLF by preventing the overwhelming of triglycerides (TGs), despite both reducing the hepatic lipid accumulation. An analysis of the hepatic major lipids profile revealed significant increased variations in the PUFAs and phospholipid composition in the Rag2-/- mice fed with the LWPF or LF. The Rag2-/-Il2-/- mice, lacking innate and adaptive lymphocytes, seemed resistant to mobilizing hepatic TGs and unresponsive to lipid accumulation when fed with the LF. Notably, only the Rag2-/- mice fed with the LWPF showed an increased proportion of hepatic CD68+F4/80+ cells population, with a better controlled expression of the innate immune 'Toll-like' receptor (TLR)-4. These changes were associated with an oriented expansion of pluripotential CD117+ cells towards ILC2s (CD117+KLRG1+). Thus, C. quinoa's ingredients resulted in being advantageous for improving the mechanisms for controlling the hepatic lipotoxicity derived from a high-fat diet, promoting liver macrophage and ILCs expansion to a selective functional differentiation for the control of HFD-driven immune and metabolic disturbances.

4.
Front Oncol ; 12: 1046369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439419

RESUMEN

Lung cancer is one of the most deadly and common cancers in the world. The molecular features of patient's tumours dictate the different therapeutic decisions, which combines targeted therapy, chemotherapy, and immunotherapy. Altered cellular metabolism is one of the hallmarks of cancer. Tumour cells reprogram their metabolism to adapt to their novel requirements of growth, proliferation, and survival. Together with the Warburg effect, the role of lipid metabolism alterations in cancer development and prognosis has been highlighted. Several lipid related genes have been shown to promote transformation and progression of cancer cells and have been proposed as biomarkers for prognosis. Nevertheless, the exact mechanisms of the regulation of lipid metabolism and the biological consequences in non-small cell lung cancer (NSCLC) have not been elucidated yet. There is an urgent necessity to develop multidisciplinary and complementary strategies to improve NSCLC patients´ well-being and treatment response. Nutrients can directly affect fundamental cellular processes and some diet-derived ingredients, bioactive natural compounds and natural extracts have been shown to inhibit the tumour growth in preclinical and clinical trials. Previously, we described a supercritical extract of rosemary (SFRE) (12 - 16% composition of phenolic diterpenes carnosic acid and carnosol) as a potential antitumoral agent in colon and breast cancer due to its effects on the inhibition of lipid metabolism and DNA synthesis, and in the reduction of resistance to 5-FluoroUracil (5-FU). Herein, we demonstrate SFRE inhibits NSCLC cell bioenergetics identifying several lipid metabolism implicated targets. Moreover, SFRE synergises with standard therapeutic drugs used in the clinic, such as cisplatin, pemetrexed and pembrolizumab to inhibit of cell viability of NSCLC cells. Importantly, the clinical relevance of SFRE as a complement in the treatment of NSCLC patients is suggested based on the results of a pilot clinical trial where SFRE formulated with bioactive lipids (PCT/ES2017/070263) diminishes metabolic and inflammatory targets in peripheral-blood mononuclear cells (PBMC), such as MAPK (p=0.04), NLRP3 (p=0.044), and SREBF1 (p=0.047), which may augment the immune antitumour function. Based on these results, SFRE merits further investigation as a co-adjuvant in the treatment of NSCLC. Clinical trial registration: ClinicalTrials.gov Identifier NCT05080920.

5.
Biomedicines ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36140198

RESUMEN

Alzheimer's disease (AD) is a prototypical inflammation-associated loss of cognitive function, with approximately 90% of the AD burden associated with invading myeloid cells controlling the function of the resident microglia. This indicates that the immune microenvironment has a pivotal role in the pathogenesis of the disease. Multiple peripheral stimuli, conditioned by complex and varied interactions between signals that stem at the intestinal level and neuroimmune processes, are involved in the progression and severity of AD. Conceivably, the targeting of critical innate immune signals and cells is achievable, influencing immune and metabolic health within the gut-brain axis. Considerable progress has been made, modulating many different metabolic and immune alterations that can drive AD development. However, non-pharmacological strategies targeting immunometabolic processes affecting neuroinflammation in AD treatment remain general and, at this point, are applied to all patients regardless of disease features. Despite these possibilities, improved knowledge of the relative contribution of the different innate immune cells and molecules comprising the chronically inflamed brain network to AD pathogenesis, and elucidation of the network hierarchy, are needed for planning potent preventive and/or therapeutic interventions. Moreover, an integrative perspective addressing transdisciplinary fields can significantly contribute to molecular pathological epidemiology, improving the health and quality of life of AD patients. This review is intended to gather modifiable immunometabolic processes based on their importance in the prevention and management of AD.

6.
Biomedicines ; 9(11)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34829862

RESUMEN

Innate immunity in the tumor microenvironment plays a pivotal role in hepatocarcinoma (HCC) progression. Plant seeds provide serine-type protease inhibitors (SETIs), which can have a significant influence on liver inflammation and macrophage function. To elucidate the influence of SETIs to counter pro-tumorigenic conditions, at the early stages of HCC development, it was used as an established model of diethylnitrosamine/thioacetamide-injured liver fed with a standard diet (STD) or high-fat diet (42%) (HFD). The administration of SETIs improved survival and ameliorated tumor burden via modulation of monocyte-derived macrophages as key effectors involved in diet-induced HCC development. RT-qPCR analyses of hepatic tissue evidenced a diet-independent downregulatory effect of SETIs on the transcripts of CD36, FASN, ALOX15, and SREBP1c; however, animals fed with an STD showed opposing effects for PPAR and NRLP3 levels. These effects were accompanied by a decreased production of IL-6 and IL-17 but increased that of TNF in animals receiving SETIs. Moreover, only animals fed an HFD displayed increased concentrations of the stem cell factor. Overall, SETIs administration decreased the hepatic contents of lysophosphatydilcholine, phosphatidylinositol, phosphatidylcholine, and phosphatidyl ethanolamine. Notably, animals that received SETIs exhibited increased hepatic proportions of CD68+CX3CR1+CD74+ cells and at a higher rate in those animals fed an HFD. Altogether, the data evidence that oral administration of SETIs modulates the tumor microenvironment, improving hepatic innate immune response(s) and favoring a better antitumoral environment. It represents a path forward in developing coadjutant strategies to pharmacological therapies, with either a preventive or therapeutic character, to counter physiopathological conditions at early stages of HCC development.

7.
Int J Mol Sci ; 22(15)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34360703

RESUMEN

5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1ß), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación , Inhibidores de la Lipooxigenasa/farmacología , Lipooxigenasa/efectos de los fármacos , Polifenoles/farmacología , Animales , Humanos , Fenoles/farmacología
8.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361073

RESUMEN

This study evaluated the immunonutritional effects caused by protease inhibitors from Avena sativa and Triticum durum to human macrophage-like cells. Macrophages were exposed (3 h) to extracts obtained from flours, and mitochondrial-associated oxygen consumption rates and inflammatory, metabolic, and proteome adaptations were quantified. Mass spectrometry 'm/z' signals of the extracts obtained from T. durum and A. sativa revealed molecular weights of 18-35 kDa and 16-22 kDa, respectively, for the compounds present at highest concentrations. Extracts from T. durum exhibited lower susceptibility to degradation by gastrointestinal enzymes than those from A. sativa: 9.5% vs 20.2%. Despite their different botanical origin, both extracts increased TLR4 expression. Metabolic protein levels were indicative of a decreased glycolytic to lactate flux in cell cultures upon stimulation with A. sativa extracts, which improved mitochondrial respiration in relation to those from T. durum. Principal components analysis confirmed relative similarities between immune-metabolic events triggered by immunonutritional ingredients in T. durum and A. sativa. Collectively, immunonutritional effects help to interpret the differences between both crops, worsening or improving, macrophage immune reactivity (tolerogenicity), and better control of inflammatory processes.


Asunto(s)
Avena/química , Macrófagos/inmunología , Macrófagos/metabolismo , Extractos Vegetales/farmacología , Inhibidores de Proteasas/farmacología , Proteoma/efectos de los fármacos , Triticum/química , Humanos , Macrófagos/efectos de los fármacos
9.
Nutrients ; 13(5)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063252

RESUMEN

Innate immunity plays a determinant role in high fat diet (HFD)-induced insulin resistance. This study compares the effects of immunonutritional bioactives from Chenopodium quinoa (WQ) or Salvia hispanica L. (Ch) when used to partially replace wheat flour (WB) into bread formulations. These flours were chosen to condition starch and lipid content in the products as well as because their immunonutritional activity. To be administered with different bread formulations, HFD-fed C57BL/6J mice were distributed in different groups: (i) wild type, (ii) displaying inherited disturbances in glucose homeostasis, and (iii) displaying dietary iron-mediated impairment of the innate immune TLR4/TRAM/TRIF pathway. We analyze the effects of the products on glycaemia and insulin resistance (HOMA-IR), plasmatic triglycerides, intestinal and hepatic gene expression and variations of myeloid (MY), and lymphoid (LY) cells population in peripheral blood. Our results show that feeding animals with WQ and Ch formulations influenced the expression of lipogenic and coronary risk markers, thus attaining a better control of hepatic lipid accumulation. WQ and Ch products also improved glucose homeostasis compared to WB, normalizing the HOMA-IR in animals with an altered glucose and lipid metabolism. These positive effects were associated with positive variations in the peripheral myeloid cells population.


Asunto(s)
Chenopodium quinoa , Harina , Resistencia a la Insulina/fisiología , Células Mieloides/efectos de los fármacos , Fitoquímicos/administración & dosificación , Salvia , Animales , Glucemia/inmunología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Inmunidad Innata/efectos de los fármacos , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fenómenos Fisiológicos de la Nutrición/efectos de los fármacos , Fenómenos Fisiológicos de la Nutrición/inmunología , Triglicéridos/sangre
10.
Nutrients ; 13(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567596

RESUMEN

Caffeic acid is one of the most abundant hydroxycinnamic acids in fruits, vegetables, and beverages. This phenolic compound reaches relevant concentrations in the colon (up to 126 µM) where it could come into contact with the intestinal cells and exert its anti-inflammatory effects. The aim of this investigation was to study the capacity of caffeic acid, at plausible concentrations from an in vivo point of view, to modulate mechanisms related to intestinal inflammation. Consequently, we tested the effects of caffeic acid (50-10 µM) on cyclooxygenase (COX)-2 expression and prostaglandin (PG)E2, cytokines, and chemokines (IL-8, monocyte chemoattractant protein-1 -MCP-1-, and IL-6) biosynthesis in IL-1ß-treated human myofibroblasts of the colon, CCD-18Co. Furthermore, the capacity of caffeic acid to inhibit the angiotensin-converting enzyme (ACE) activity, to hinder advanced glycation end product (AGE) formation, as well as its antioxidant, reducing, and chelating activity were also investigated. Our results showed that (i) caffeic acid targets COX-2 and its product PGE2 as well as the biosynthesis of IL-8 in the IL-1ß-treated cells and (ii) inhibits AGE formation, which could be related to (iii) the high chelating activity exerted. Low anti-ACE, antioxidant, and reducing capacity of caffeic acid was also observed. These effects of caffeic acid expands our knowledge on anti-inflammatory mechanisms against intestinal inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Ácidos Cafeicos/farmacología , Gastroenteritis/tratamiento farmacológico , Intestinos/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antioxidantes/farmacología , Quelantes/farmacología , Quimiocinas/efectos de los fármacos , Colon/citología , Colon/efectos de los fármacos , Ciclooxigenasa 2/efectos de los fármacos , Citocinas/efectos de los fármacos , Dinoprostona/antagonistas & inhibidores , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Humanos , Inflamación , Interleucina-1beta/biosíntesis , Intestinos/citología
11.
Food Funct ; 11(9): 7994-8002, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32841309

RESUMEN

High-energy intake causes imbalances in nutrient homeostasis contributing to a high prevalence of metabolic chronic diseases. The extent to what metabolic imbalances can be ameliorated by the inclusion of immunonutritional ingredients obtained from flours favouring nutrient and calorie management remains poorly understood. Herein, it is demonstrated that partial replacement of wheat flour (WB) with that from Chenopodium quinoa varieties [red (RQ, 25% w/w) and white (WQ, 25% w/w)] as well as from Salvia hispanica L., [whole (Ch, 20% w/w) and semi-defatted (Ch_D, 20% w/w)] in bread formulations ameliorates the metabolic and inflammation consequences of high-fat diet consumption in hyperglycaemic animals. Feeding animals with bread formulations replacing wheat flour effectively reduced insulin resistance (by 2-fold, HOMAir). The reduction in starch content did not appear as a determinant of controlling HOMAir. Only animals fed with RQ and Ch diet displayed increased plasma levels of triglycerides, which significantly contributed to mitigate HFD-induced hepatic lipid peroxidation. The latter was increased in animals receiving Ch_D diet, where PUFAs were eliminated from chia's flour. Feeding with WQ and Ch samples caused an upward trend in hepatic TNF-α and IL-6 levels. Despite similarities between immunonutritional agonists in animals fed with RQ and WQ, IL-17 levels were quantified higher for animals fed with WQ. All bread formulations except Ch_D samples significantly increased the hepatic granulocyte-monocyte colony stimulation factor levels. These results indicated that replacement of wheat flour with that from quinoa and chia improved the metabolic imbalances in hyperglycaemic animals.


Asunto(s)
Pan/análisis , Chenopodium quinoa/química , Dieta Alta en Grasa/efectos adversos , Hiperglucemia/metabolismo , Salvia/química , Animales , Peso Corporal , Harina/análisis , Resistencia a la Insulina , Interleucina-17 , Interleucina-6 , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Semillas/química , Almidón/metabolismo , Triglicéridos , Triticum , Factor de Necrosis Tumoral alfa
12.
Nutrients ; 12(7)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629893

RESUMEN

Complex interactions between immunonutritional agonist and high fat intake (HFD), the immune system and finally gut microbiota are important determinants of hepatocarcinoma (HCC) severity. The ability of immunonutritional agonists to modulate major aspects such as liver innate immunity and inflammation and alterations in major lipids profile as well as gut microbiota during HCC development is poorly understood. 1H NMR has been employed to assess imbalances in saturated fatty acids, MUFA and PUFA, which were associated to variations in iron homeostasis. These effects were dependent on the botanical nature (Chenopodium quinoa vs. Salvia hispanica L.) of the compounds. The results showed that immunonutritional agonists' promoted resistance to hepatocarcinogenesis under pro-tumorigenic inflammation reflected, at a different extent, in increased proportions of F4/80+ cells in injured livers as well as positive trends of accumulated immune mediators (CD68/CD206 ratio) in intestinal tissue. Administration of all immunonutritional agonists caused similar variations of fecal microbiota, towards a lower obesity-inducing potential than animals only fed a HFD. Modulation of Firmicutes to Bacteroidetes contents restored the induction of microbial metabolites to improve epithelial barrier function, showing an association with liver saturated fatty acids and the MUFA and PUFA fractions. Collectively, these data provide novel findings supporting beneficial immunometabolic effects targeting hepatocarcinogenesis, influencing innate immunity within the gut-liver axis, and providing novel insights into their immunomodulatory activity.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Chenopodium quinoa , Neoplasias Hepáticas/inmunología , Fenómenos Fisiológicos de la Nutrición/inmunología , Extractos Vegetales/farmacología , Salvia , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Bacteroidetes , Carcinoma Hepatocelular/microbiología , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/inmunología , Ácidos Grasos/inmunología , Firmicutes , Microbioma Gastrointestinal/inmunología , Inmunidad Innata/efectos de los fármacos , Inflamación , Mucosa Intestinal/inmunología , Intestinos/inmunología , Lectinas Tipo C/metabolismo , Hígado/inmunología , Neoplasias Hepáticas/microbiología , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones , Receptores de Superficie Celular/metabolismo , Semillas
13.
Nutrients ; 11(5)2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130634

RESUMEN

Plant-derived food consumption has gained attention as potential intervention for the improvement of intestinal inflammatory diseases. Apple consumption has been shown to be effective at ameliorating intestinal inflammation symptoms. These beneficial effects have been related to (poly)phenols, including phloretin (Phlor) and its glycoside named phloridzin (Phldz). To deepen the modulatory effects of these molecules we studied: i) their influence on the synthesis of proinflammatory molecules (PGE2, IL-8, IL-6, MCP-1, and ICAM-1) in IL-1ß-treated myofibroblasts of the colon CCD-18Co cell line, and ii) the inhibitory potential of the formation of advanced glycation end products (AGEs). The results showed that Phlor (10-50 µM) decreased the synthesis of PGE2 and IL-8 and the formation of AGEs by different mechanisms. It is concluded that Phlor and Phldz, compounds found exclusively in apples, are positively associated with potential beneficial effects of apple consumption.


Asunto(s)
Colon/efectos de los fármacos , Frutas/química , Inflamación/metabolismo , Malus/química , Floretina/farmacología , Florizina/farmacología , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Línea Celular , Colon/metabolismo , Colon/patología , Dieta , Dinoprostona/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Inflamación/dietoterapia , Inflamación/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/dietoterapia , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-1beta , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Floretina/uso terapéutico , Florizina/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/uso terapéutico , Polifenoles/farmacología , Polifenoles/uso terapéutico , Receptores CCR2/metabolismo
14.
J Pharm Sci ; 107(3): 778-784, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29107046

RESUMEN

Oral ingestion is a common, easy to access, route for therapeutic drugs to be delivered. The conception of the gastrointestinal tract as a passive physiological compartment has evolved toward a dynamic perspective of the same. Thus, microbiota plays an important role in contributing with additional metabolic capacities to its host as well as to its phenotypic heterogeneity. These adaptations in turn influence the efficacy and toxicity of a broad range of drugs. Notwithstanding, xenobiotics and therapeutic drugs affecting the microbiome's activity also significantly impact metabolism affecting different organs and tissues, and thereby drugs' toxicity/efficacy effects. Other physiological interfaces (i.e., gut, lungs, and skin) also represent complex media with features about microbiota's composition. In addition, there have been described key regulatory effects of microbes on immunotherapy, because of its potential harnessing the host immune system, mental disorders by modulating neuroendocrine systems and cancer. These alterations are responsible of physiological variations in the response(s) between individuals and populations. However, the study of population-based differences in intestinal microbial-related drug metabolism has been largely inferential. This review outlines major reciprocal implications between drugs and microbes regulatory capacities in pharmacotherapy.


Asunto(s)
Microbiota/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Animales , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Humanos , Neoplasias/tratamiento farmacológico
15.
J Physiol Biochem ; 66(2): 153-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20514534

RESUMEN

Celiac disease is an autoimmune enteropathy caused by a permanent intolerance to gliadins. In this study the effects of two gliadin-derived peptides (PA2, PQPQLPYPQPQLP and PA9, QLQPFPQPQLPY) on TNFalpha production by intestinal epithelial cells (Caco-2) and whether these effects were related to protein kinase A (PKA) and/or -C (PKC) activities have been evaluated. Caco-2 cell cultures were challenged with several sets of gliadin peptides solutions (0.25 mg/mL), with/without different activators of PKA or PKC, bradykinin (Brdkn) and pyrrolidine dithiocarbamate (PDTC). The gliadin-derived peptides assayed represent the two major immunodominant epitopes of the peptide 33-mer of alpha-gliadin (56-88) (LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF). Both peptides induced the TNFalpha production triggering the inflammatory cell responses, the PA2 being more effective. The addition of the peptides in the presence of dibutyril cyclic AMP (cAMP), Brdkn or PDTC, inhibited the TNFalpha production. The PKC-activator phorbol 12-myristate 13-diacetate additionally increased the PA2- and PA9-induced TNFalpha production. These results link the gliadin-derived peptides induced TNFalpha production through cAMP-dependent PKA activation, where ion channels controlling calcium influx into cells could play a protective role, and requires NF-kappaB activation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Gliadina/farmacología , Fragmentos de Péptidos/farmacología , Factor de Necrosis Tumoral alfa/biosíntesis , Células CACO-2 , AMP Cíclico/farmacología , Humanos , Lipopolisacáridos/farmacología , Proteína Quinasa C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...