Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Astrophys J Lett ; 882(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-32042401

RESUMEN

In collision-poor plasmas from space, e.g., solar wind or stellar outflows, the heat flux carried by the strahl or beaming electrons is expected to be regulated by the self-generated instabilities. Recently, simultaneous field and particle observations have indeed revealed enhanced whistler-like fluctuations in the presence of counter-beaming populations of electrons, connecting these fluctuations to the whistler heat-flux instability (WHFI). This instability is predicted only for limited conditions of electron beam-plasmas, and has not yet been captured in numerical simulations. In this Letter we report the first simulations of WHFI in particle-in-cell setups, realistic for the solar wind conditions, and without temperature gradients or anisotropies to trigger the instability in the initiation phase. The velocity distributions have a complex reaction to the enhanced whistler fluctuations conditioning the instability saturation by a decrease of the relative drifts combined with induced (effective) temperature anisotropies (heating the core electrons and pitch-angle and energy scattering the strahl). These results are in good agreement with a recent quasilinear approach, and support therefore a largely accepted belief that WHFI saturates at moderate amplitudes. In the anti-sunward direction the strahl becomes skewed with a pitch-angle distribution decreasing in width as electron energy increases, which seems to be characteristic of self-generated whistlers and not to small-scale turbulence.

2.
Phys Rev Lett ; 119(5): 055101, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949734

RESUMEN

We report unambiguous in situ observation of the coalescence of macroscopic flux ropes by the magnetospheric multiscale (MMS) mission. Two coalescing flux ropes with sizes of ∼1 R_{E} were identified at the subsolar magnetopause by the occurrence of an asymmetric quadrupolar signature in the normal component of the magnetic field measured by the MMS spacecraft. An electron diffusion region (EDR) with a width of four local electron inertial lengths was embedded within the merging current sheet. The EDR was characterized by an intense parallel electric field, significant energy dissipation, and suprathermal electrons. Although the electrons were organized by a large guide field, the small observed electron pressure nongyrotropy may be sufficient to support a significant fraction of the parallel electric field within the EDR. Since the flux ropes are observed in the exhaust region, we suggest that secondary EDRs are formed further downstream of the primary reconnection line between the magnetosheath and magnetospheric fields.

3.
Phys Rev Lett ; 116(23): 235102, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27341241

RESUMEN

We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

4.
Phys Rev Lett ; 112(15): 151102, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24785022

RESUMEN

We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

5.
Phys Rev Lett ; 112(14): 145002, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24765977

RESUMEN

Kinetic simulations of magnetotail reconnection have revealed electromagnetic whistlers originating near the exhaust boundary and propagating into the inflow region. The whistler production mechanism is not a linear instability, but rather is Cerenkov emission of almost parallel whistlers from localized moving clumps of charge (finite-size quasiparticles) associated with nonlinear coherent electron phase space holes. Whistlers are strongly excited by holes without ever growing exponentially. In the simulation the whistlers are emitted in the source region from holes that accelerate down the magnetic separatrix towards the x line. The phase velocity of the whistlers vφ in the source region is everywhere well matched to the hole velocity vH as required by the Cerenkov condition. The simulation shows emission is most efficient near the theoretical maximum vφ=half the electron Alfven speed, consistent with the new theoretical prediction that faster holes radiate more efficiently. While transferring energy to whistlers the holes lose coherence and dissipate over a few local ion inertial lengths. The whistlers, however, propagate to the x line and out over many 10's of ion inertial lengths into the inflow region of reconnection. As the whistlers pass near the x line they modulate the rate at which magnetic field lines reconnect.

6.
Phys Rev Lett ; 111(4): 045002, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23931376

RESUMEN

We perform three-dimensional particle-in-cell simulations of magnetic reconnection with multiple magnetic null points. Magnetic field energy conversion into kinetic energy is about five times higher than in traditional Harris sheet configuration. More than 85% of initial magnetic field energy is transferred to particle energy during 25 reversed ion cyclofrequencies. Magnetic reconnection in the cluster of null points evolves in three phases. During the first phase, ion beams are excited, then give part of their energy back to the magnetic field in the second phase. In the third phase, magnetic reconnection occurs in many small patches around the current channels formed along the stripes of a low magnetic field. Magnetic reconnection in null points essentially presents three-dimensional features, with no two-dimensional symmetries or current sheets.

7.
Phys Rev Lett ; 107(13): 135001, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-22026861

RESUMEN

Previous 2D simulations of reconnection using a standard model of initially antiparallel magnetic fields have detected electron jets outflowing from the x point into the ion outflow exhausts. Associated with these jets are extended "outer electron diffusion regions." New PIC simulations with an ion to electron mass ratio as large as 1836 (an H(+) plasma) now show that the jets are strongly deflected and the outer electron diffusion region is broken up by a very weak out-of-plane magnetic guide field, even though the diffusion rate itself is unchanged. Jet outflow and deflection are interpreted in terms of electron dynamics and are compared to recent measurements of jets in the presence of a small guide field in Earth's magnetosheath.

8.
Phys Rev Lett ; 105(25): 255001, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21231595

RESUMEN

We show experimentally for the first time that two mutually attracting flux ropes may bounce back instead of merging together, leading to a variety of dynamics not expected from a two-dimensional model. Attraction forces due to flux rope currents compete with repulsion from field line bending of in-plane and out-of-plane magnetic fields and elastic plasma compression. Bouncing dynamics occurs if the line-bending force due to an out-of-plane field dominates. Otherwise, the ropes merge. Further reduction in the field line-bending force results in violently erratic magnetic states.

9.
Rev Sci Instrum ; 79(10): 10F129, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044613

RESUMEN

In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a "wobbly" probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

10.
Phys Rev Lett ; 100(20): 205004, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18518545

RESUMEN

Magnetic flux tubes or flux ropes in plasmas are important in nature and the laboratory. Axial boundary conditions strongly affect flux rope behavior, but this has never been systematically investigated. We experimentally demonstrate for the first time axial boundary conditions that are continuously varied between ideal magnetohydrodynamic (MHD) line-tied (fixed) and non-line-tied (free). In contrast with the usual interpretation that mechanical plasma motion is MHD line-tied to a conducting boundary, we constrain boundary plasma motion to cause the line-tied condition.

11.
Phys Rev Lett ; 97(1): 015002, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16907381

RESUMEN

First experimental measurements are presented for the kink instability in a linear plasma column which is insulated from an axial boundary by finite sheath resistivity. An instability threshold below the classical Kruskal-Shafranov threshold, axially asymmetric mode structure, and rotation are observed. These are accurately reproduced by a recent kink theory, which includes axial plasma flow and one end of the plasma column that is free to move due to a non-line-tied boundary condition.

12.
Phys Rev Lett ; 94(17): 175005, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15904307

RESUMEN

An investigation of the properties of linear stability is conducted for a system consisting of particles having mass m and charge q, interacting through the gravitational and electrostatic force (Jeans instability). However, in light of recent works showing that dust particles in a plasma can have a Lennard-Jones-like shielding potential, a new set of equations has been derived, where the electrostatic interaction among the dust particles is Lennard-Jones-like instead of Coulomb-like. A new condition for the gravitational instability is derived, showing a broader spectrum of unstable modes with faster growth rates.

13.
Phys Rev Lett ; 92(3): 035002, 2004 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-14753881

RESUMEN

We present a simulation study of the charging of a dust grain immersed in a plasma, considering the effect of thermionic electron emission from the grain. It is shown that the orbit motion limited theory is no longer reliable when electron emission becomes large: screening can no longer be treated within the Debye-Huckel approach and an attractive potential well can form, leading to the possibility of attractive forces on other grains with the same polarity. We suggest to perform laboratory experiments where emitting dust grains could be used to create nonconventional dust crystals or macromolecules.

14.
Artículo en Inglés | MEDLINE | ID: mdl-11088576

RESUMEN

A test particle immersed in a plasma produces a wake when at least one plasma species is drifting. The present work presents a new approach to the study of plasma wakes. The solution to the problem is found in terms of a spherical harmonics expansion. The solution is studied for conditions typical in dusty plasma experiments: the ions stream relative to the test particle, while the electrons have zero average velocity. The results confirm previous findings obtained with theories based on the Fourier transform method. The present method is characterized by two new aspects. First, the wake field is studied as a function of the ion to electron temperature ratio. Second, the present theory is developed fully in the real space, without introducing the Fourier transform, and can be more naturally extended to include nonlinear effects and to include the collisions between dust particles and plasma species.

15.
Artículo en Inglés | MEDLINE | ID: mdl-11088820

RESUMEN

The time-dependent Tsallis statistical distribution describing anomalous diffusion is usually obtained in the literature as the solution of a nonlinear Fokker-Planck (FP) equation [A.R. Plastino and A. Plastino, Physica A 222, 347 (1995)]. The scope of the present paper is twofold. First, we show that this distribution can be obtained also as a solution of the nonlinear porous media equation. Second, we prove that the time-dependent Tsallis distribution can be obtained also as a solution of a linear FP equation [G. Kaniadakis and P. Quarati, Physica A 237, 229 (1997)] with coefficients depending on the velocity, which describes a generalized Brownian motion. This linear FP equation is shown to arise from a microscopic dynamics governed by a standard Langevin equation in the presence of multiplicative noise.

16.
Artículo en Inglés | MEDLINE | ID: mdl-11970306

RESUMEN

A parametric study of the properties of electrorheological fluids is conducted using molecular dynamics (MD) simulations. The MD model is based on the solution of the Langevin equation for a number of suspended particles. The equations of motion include inertial effects, polarization forces, Stokes' drag, short range repulsion, and Brownian forces. Different polarization forces are considered to include the effect of enhancements at short range due to multipole moments induced by the suspended particles and other effects. The model is used to investigate the structural changes induced by external electric fields and by shear strains imposed on the system. The response times are studied as a function of two characteristic parameters describing the physical status of the system (temperature and external electric field). Finally, the stress-strain characteristics are studied and the yield stress is calculated as a function of the external electric field. The simulated response is compared with experimental findings.

17.
Phys Rev Lett ; 75(24): 4409-4412, 1995 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-10059901
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...