Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Proc Natl Acad Sci U S A ; 104(4): 1389-94, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-17229834

RESUMEN

Cockayne syndrome (CS) is a rare recessive childhood-onset neurodegenerative disease, characterized by a deficiency in the DNA repair pathway of transcription-coupled nucleotide excision repair. Mice with a targeted deletion of the CSB gene (Csb-/-) exhibit a much milder ataxic phenotype than human patients. Csb-/- mice that are also deficient in global genomic repair [Csb-/-/xeroderma pigmentosum C (Xpc)-/-] are more profoundly affected, exhibiting whole-body wasting, ataxia, and neural loss by postnatal day 21. Cerebellar granule cells demonstrated high TUNEL staining indicative of apoptosis. Purkinje cells, identified by the marker calbindin, were severely depleted and, although not TUNEL-positive, displayed strong immunoreactivity for p53, indicating cellular stress. A subset of animals heterozygous for Csb and Xpc deficiencies was more mildly affected, demonstrating ataxia and Purkinje cell loss at 3 months of age. Mouse, Csb-/-, and Xpc-/- embryonic fibroblasts each exhibited increased sensitivity to UV light, which generates bulky DNA damage that is a substrate for excision repair. Whereas Csb-/-/Xpc-/- fibroblasts were more UV-sensitive than either single knockout, double-heterozygote fibroblasts had normal UV sensitivity. Csb-/- mice crossed with a strain defective in base excision repair (Ogg1) demonstrated no enhanced neurodegenerative phenotype. Complete deficiency in nucleotide excision repair therefore renders the brain profoundly sensitive to neurodegeneration in specific cell types of the cerebellum, possibly because of unrepaired endogenous DNA damage that is a substrate for nucleotide but not base excision repair.


Asunto(s)
Apoptosis/fisiología , Cerebelo/patología , Síndrome de Cockayne/fisiopatología , Reparación del ADN , Neuronas/patología , Proteína p53 Supresora de Tumor/fisiología , Regulación hacia Arriba , Animales , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/fisiología , Inmunohistoquímica , Ratones , Proteínas de Unión a Poli-ADP-Ribosa , Rayos Ultravioleta
3.
Neuroscience ; 145(4): 1300-8, 2007 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-17055654

RESUMEN

Cockayne syndrome (CS) is a progressive childhood neurodegenerative disorder associated with a DNA repair defect caused by mutations in either of two genes, CSA and CSB. These genes are involved in nucleotide excision repair (NER) of DNA damage from ultraviolet (UV) light, other bulky chemical adducts and reactive oxygen in transcriptionally active genes (transcription-coupled repair, TCR). For a long period it has been assumed that the symptoms of CS patients are all due to reduced TCR of endogenous DNA damage in the brain, together with unexplained unique sensitivity of specific neural cells in the cerebellum. Not all the symptoms of CS patients are however easily related to repair deficiencies, so we hypothesize that there are additional pathways relevant to the disease, particularly those that are downstream consequences of a common defect in the E3 ubiquitin ligase associated with the CSA and CSB gene products. We have found that the CSB defect results in altered expression of anti-angiogenic and cell cycle genes and proteins at the level of both gene expression and protein lifetime. We find an over-abundance of p21 due to reduced protein turnover, possibly due to the loss of activity of the CSA/CSB E3 ubiquitylation pathway. Increased levels of p21 can result in growth inhibition, reduced repair from the p21-PCNA interaction, and increased generation of reactive oxygen. Consistent with increased reactive oxygen levels we find that CS-A and -B cells grown under ambient oxygen show increased DNA breakage, as compared with xeroderma pigmentosum cells. Thus the complex symptoms of CS may be due to multiple, independent downstream targets of the E3 ubiquitylation system that results in increased DNA damage, reduced transcription coupled repair, and inhibition of cell cycle progression and growth.


Asunto(s)
Síndrome de Cockayne/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Regulación de la Expresión Génica/genética , Transcripción Genética/genética , Ciclo Celular/genética , Línea Celular , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/fisiopatología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN/efectos de la radiación , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Humanos , Estrés Oxidativo/fisiología , Proteínas de Unión a Poli-ADP-Ribosa , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Rayos Ultravioleta
4.
Cell Cycle ; 2(4): 310-5, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12851481

RESUMEN

We describe here a model for sequential recruitment of various enzymatic systems that maintain DNA replication fidelity in cells with damaged bases, especially those formed by ultraviolet (UV) irradiation. Systems of increasing complexity but decreasing fidelity are recruited to restore replication of damaged DNA. The first and most accurate response is nucleotide excision repair (NER) that is cell cycle-independent; next come various delaying cell cycle checkpoints that provide an extended time window for NER. These delay the onset of the S phase at the G1/S boundary, and inhibit the initiation of individual replicating units (replicons and clusters of replicons) within the S phase. When checkpoints fail to operate completely, DNA replication forks must negotiate damage and the loss of coding information on the parental DNA strands. Replication can be resumed using bypass polymerases, or alternative bypass mechanisms. Finally, if all else fails, replication forks may degrade to double strand breaks and recombinational processes then allow their reconstruction. A network of signaling kinases modulates the efficiency of many damage responsive proteins to tailor their activities and subcellular localizations by phosphorylation and dephosphorylation.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Recombinación Genética/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Mutación , Fosforilación , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinación Genética/genética , Origen de Réplica/genética , Origen de Réplica/fisiología , Replicón/genética , Replicón/fisiología , Fase S/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta
6.
Mutat Res ; 396(1-2): 65-78, 1997 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-9434860

RESUMEN

The teratogenicity of many xenobiotics is thought to depend at least in part upon their bioactivation by embryonic cytochromes P450, prostaglandin H synthase (PHS) and lipoxygenases (LPOs) to electrophilic and/or free radical reactive intermediates that covalently bind to or oxidize cellular macromolecules such as DNA, protein and lipid, resulting in in utero death or teratogenesis. Using as models the tobacco carcinogens benzo[a]pyrene (B[a]P) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the anticonvulsant drug phenytoin, structurally related anticonvulsants (e.g. mephenytoin, nirvanol, trimethadione, dimethadione) and the sedative drug thalidomide, we have examined the potential teratologic relevance of free radical-initiated, reactive oxygen species (ROS)-mediated oxidative molecular target damage, genotoxicity (micronucleus formation) and DNA repair in mouse and rabbit models in vivo and in embryo culture, and in vitro using purified enzymes or cultured rat skin fibroblasts. These teratogens were bioactivated by PHS and LPOs to free radical reactive intermediary metabolites, characterized by electron spin resonance spectrometry, that initiated ROS formation, including hydroxyl radicals, which were characterized by salicylate hydroxylation. ROS-initiated oxidation of DNA (8-hydroxy-2'-deoxyguanosine formation), protein (carbonyl formation), glutathione (GSH) and lipid (peroxidation), and embryotoxicity were shown for phenytoin, its major hydroxylated metabolite 5-(p-hydroxyphenyl)-5-phenylhydantoin [HPPH], thalidomide, B[a]P and NNK in vivo and/or in embryo culture, the latter indicating a teratologically critical role for embryonic, as distinct from maternal, processes. DNA oxidation and teratogenicity of phenytoin and thalidomide were reduced by PHS inhibitors. Oxidative macromolecular lesions and teratogenicity also were reduced by the free radical trapping agent phenylbutylnitrone (PBN), and the antioxidants caffeic acid and vitamin E. In embryo culture, addition of superoxide dismutase (SOD) to the medium enhanced embryonic SOD activity, and SOD or catalase blocked the oxidative lesions and embryotoxicity initiated by phenytoin and B[a]P, suggesting a major contribution of ROS, as distinct from covalent binding, to the teratologic mechanism. In in vivo studies, other antioxidative enzymes like GSH peroxidase, GSH reductase and glucose-6-phosphate dehydrogenase (G6PD) were similarly protective. Even untreated G6PD-deficient mice had enhanced embryopathies, indicating a teratological role for endogenous oxidative stress. In cultured fibroblasts, B[a]P, NNK, phenytoin and HPPH initiated DNA oxidation and micronucleus formation, which were inhibited by SOD. Oxidation of DNA may be particularly critical, since transgenic mice with +/- or -/- deficiencies in the p53 tumor suppressor gene, which facilitates DNA repair, are more susceptible to phenytoin and B[a]P teratogenicity. Even p53-deficient mice treated only with normal saline showed enhanced embryopathies, suggesting the teratological importance of endogenous oxidative stress, as observed with G6PD deficiency. These results suggest that oxidative macromolecular damage may play a role in the teratologic mechanism of xenobiotics that are bioactivated to a reactive intermediate, as well in the mechanism of embryopathies occurring in the absence of xenobiotic exposure.


Asunto(s)
Teratógenos/farmacología , Xenobióticos/toxicidad , Anomalías Inducidas por Medicamentos/etiología , Anomalías Inducidas por Medicamentos/prevención & control , Animales , Anticonvulsivantes/toxicidad , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Benzo(a)pireno/toxicidad , Biotransformación , Daño del ADN , Desarrollo Embrionario y Fetal/efectos de los fármacos , Radicales Libres , Ratones , Nitrosaminas/toxicidad , Estrés Oxidativo , Fenitoína/toxicidad , Proteínas/efectos de los fármacos , Conejos , Ratas , Especies Reactivas de Oxígeno , Transducción de Señal/efectos de los fármacos , Teratógenos/farmacocinética , Talidomida/toxicidad , Xenobióticos/farmacocinética
7.
Nat Genet ; 10(2): 181-7, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7663513

RESUMEN

DNA damage may mediate birth defects caused by many drugs and environmental chemicals, therefore p53, a tumour suppressor gene that facilitates DNA repair, may be critically embryoprotective. We have studied the effects of the environmental teratogen, benzo[a]pyrene, on pregnant heterozygous p53-deficient mice. Such mice exhibited between 2- to 4-fold higher embryotoxicity and teratogenicity than normal p53-controls. Fetal resorptions reflecting in utero death were genotyped using the polymerase chain reaction and found to be increased 2.6-fold and 3.6-fold respectively with heterozygous and homozygous p53-deficient embryos. These results provide the first direct evidence that p53 may be an important teratological suppressor gene which protects the embryo from DNA-damaging chemicals and developmental oxidative stress.


Asunto(s)
Anomalías Inducidas por Medicamentos/genética , Benzo(a)pireno/farmacología , Genes p53 , Preñez/efectos de los fármacos , Animales , Secuencia de Bases , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Inducción Enzimática , Femenino , Reabsorción del Feto/genética , Eliminación de Gen , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Datos de Secuencia Molecular , Dibenzodioxinas Policloradas/farmacología , Embarazo , Preñez/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA