Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 56(6): 1359-1375.e13, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37023751

RESUMEN

CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.


Asunto(s)
Epítopos de Linfocito T , Péptidos , Humanos , Animales , Ratones , Bovinos , Ligandos , Unión Proteica , Pollos/metabolismo , Aprendizaje Automático , Antígenos de Histocompatibilidad Clase II , Alelos
2.
EMBO J ; 35(13): 1465-82, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27225933

RESUMEN

Nap1 is a histone chaperone involved in the nuclear import of H2A-H2B and nucleosome assembly. Here, we report the crystal structure of Nap1 bound to H2A-H2B together with in vitro and in vivo functional studies that elucidate the principles underlying Nap1-mediated H2A-H2B chaperoning and nucleosome assembly. A Nap1 dimer provides an acidic binding surface and asymmetrically engages a single H2A-H2B heterodimer. Oligomerization of the Nap1-H2A-H2B complex results in burial of surfaces required for deposition of H2A-H2B into nucleosomes. Chromatin immunoprecipitation-exonuclease (ChIP-exo) analysis shows that Nap1 is required for H2A-H2B deposition across the genome. Mutants that interfere with Nap1 oligomerization exhibit severe nucleosome assembly defects showing that oligomerization is essential for the chaperone function. These findings establish the molecular basis for Nap1-mediated H2A-H2B deposition and nucleosome assembly.


Asunto(s)
Histonas/química , Histonas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/química , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Inmunoprecipitación de Cromatina , Cristalografía por Rayos X , Análisis Mutacional de ADN , Modelos Moleculares , Proteína 1 de Ensamblaje de Nucleosomas/genética , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Cell Rep ; 3(3): 734-46, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23453971

RESUMEN

Tank-binding kinase I (TBK1) plays a key role in the innate immune system by integrating signals from pattern-recognition receptors. Here, we report the X-ray crystal structures of inhibitor-bound inactive and active TBK1 determined to 2.6 Å and 4.0 Å resolution, respectively. The structures reveal a compact dimer made up of trimodular subunits containing an N-terminal kinase domain (KD), a ubiquitin-like domain (ULD), and an α-helical scaffold dimerization domain (SDD). Activation rearranges the KD into an active conformation while maintaining the overall dimer conformation. Low-resolution SAXS studies reveal that the missing C-terminal domain (CTD) extends away from the main body of the kinase dimer. Mutants that interfere with TBK1 dimerization show significantly reduced trans-autophosphorylation but retain the ability to bind adaptor proteins through the CTD. Our results provide detailed insights into the architecture of TBK1 and the molecular mechanism of activation.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Serina-Treonina Quinasas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Datos de Secuencia Molecular , Fosforilación , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Mol Microbiol ; 72(1): 26-40, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19291145

RESUMEN

The structure of a 468 kDa peptidase complex from the hyperthermophile Pyrococcus horikoshii has been solved at 1.9 A resolution. The monomer contains the M42 peptidase typical catalytic domain, and a dimerization domain that allows the formation of dimers that assemble as a 12-subunit self-compartmentalized tetrahedron, similar to those described for the TET peptidases. The biochemical analysis shows that the enzyme is cobalt-activated and cleaves peptides by a non-processive mechanism. Consequently, this protein represents the third TET peptidase complex described in P. horikoshii, thereby called PhTET3. It is a lysyl aminopeptidase with a strong preference for basic residues, which are poorly cleaved by PhTET1 and PhTET2. The structural analysis of PhTET3 and its comparison with PhTET1 and PhTET2 unravels common features explaining the general mode of action of the TET molecular machines as well as differences that can be associated with strong substrate discriminations. The question of the stability of the TET assemblies under extreme temperatures has been addressed. PhTET3 displays its maximal activity at 95 degrees C and small-angle neutron scattering experiments at 90 degrees C demonstrate the absence of quaternary structure alterations after extensive incubation times. In conclusion, PhTETs are complementary peptide destruction machines that may play an important role in the metabolism of P. horikoshii.


Asunto(s)
Aminopeptidasas/metabolismo , Proteínas Arqueales/metabolismo , Pyrococcus horikoshii/enzimología , Secuencia de Aminoácidos , Aminopeptidasas/genética , Aminopeptidasas/aislamiento & purificación , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Cobalto/metabolismo , Calor , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Pyrococcus horikoshii/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...