Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
IEEE Trans Vis Comput Graph ; 30(1): 649-660, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37934634

RESUMEN

This paper is a call to action for research and discussion on data visualization education. As visualization evolves and spreads through our professional and personal lives, we need to understand how to support and empower a broad and diverse community of learners in visualization. Data Visualization is a diverse and dynamic discipline that combines knowledge from different fields, is tailored to suit diverse audiences and contexts, and frequently incorporates tacit knowledge. This complex nature leads to a series of interrelated challenges for data visualization education. Driven by a lack of consolidated knowledge, overview, and orientation for visualization education, the 21 authors of this paper-educators and researchers in data visualization-identify and describe 19 challenges informed by our collective practical experience. We organize these challenges around seven themes People, Goals & Assessment, Environment, Motivation, Methods, Materials, and Change. Across these themes, we formulate 43 research questions to address these challenges. As part of our call to action, we then conclude with 5 cross-cutting opportunities and respective action items: embrace DIVERSITY+INCLUSION, build COMMUNITIES, conduct RESEARCH, act AGILE, and relish RESPONSIBILITY. We aim to inspire researchers, educators and learners to drive visualization education forward and discuss why, how, who and where we educate, as we learn to use visualization to address challenges across many scales and many domains in a rapidly changing world: viseducationchallenges.github.io.

3.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210299, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-35965467

RESUMEN

We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Humanos
4.
IEEE Comput Graph Appl ; 42(3): 99-107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35671276

RESUMEN

With the widespread advent of visualization techniques to convey complex data, visualization literacy (VL) is growing in importance. Two noteworthy facets of literacy are user understanding and the discovery of visual patterns with the help of graphical representations. The research literature on VL provides useful guidance and opportunities for further studies in this field. This introduction summarizes and presents research on VL that examines how well users understand basic and advanced data representations. To the best of our knowledge, this is the first tutorial article on interactive VL. We describe evaluation categories of existing relevant research into unique subject groups that facilitate and inform comparisons of literacy literature and provide a starting point for interested readers. In addition, the introduction also provides an overview of the various evaluation techniques used in this field of research and their challenging nature. Our introduction provides researchers with unexplored directions that may lead to future work. This starting point serves as a valuable resource for beginners interested in the topic of VL.


Asunto(s)
Visualización de Datos , Comprensión , Humanos , Reconocimiento Visual de Modelos
5.
IEEE Trans Vis Comput Graph ; 28(2): 1397-1414, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32746287

RESUMEN

Studying variation among time-evolved translations is a valuable research area for cultural heritage. Understanding how and why translations vary reveals cultural, ideological, and even political influences on literature as well as author relations. In this article, we introduce a novel integrated visual application to support distant and close reading of a collection of Othello translations. We present a new interactive application that provides an alignment overview of all the translations and their correspondences in parallel with smooth zooming and panning capability to integrate distant and close reading within the same view. We provide a range of filtering and selection options to customize the alignment overview as well as focus on specific subsets. Selection and filtering are responsive to expert user preferences and update the analytical text metrics interactively. Also, we introduce a customized view for close reading which preserves the history of selections and the alignment overview state and enables backtracing and re-examining them. Finally, we present a new Term-Level Comparisons view (TLC) to compare and convey relative term weighting in the context of an alignment. Our visual design is guided by, used and evaluated by a domain expert specialist in German translations of Shakespeare.

6.
IEEE Trans Vis Comput Graph ; 27(9): 3826-3833, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33502982

RESUMEN

We present the VIS30K dataset, a collection of 29,689 images that represents 30 years of figures and tables from each track of the IEEE Visualization conference series (Vis, SciVis, InfoVis, VAST). VIS30K's comprehensive coverage of the scientific literature in visualization not only reflects the progress of the field but also enables researchers to study the evolution of the state-of-the-art and to find relevant work based on graphical content. We describe the dataset and our semi-automatic collection process, which couples convolutional neural networks (CNN) with curation. Extracting figures and tables semi-automatically allows us to verify that no images are overlooked or extracted erroneously. To improve quality further, we engaged in a peer-search process for high-quality figures from early IEEE Visualization papers. With the resulting data, we also contribute VISImageNavigator (VIN, visimagenavigator.github.io), a web-based tool that facilitates searching and exploring VIS30K by author names, paper keywords, title and abstract, and years.

7.
IEEE Trans Vis Comput Graph ; 27(3): 1967-1985, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31514143

RESUMEN

Unsupervised clustering techniques have been widely applied to flow simulation data to alleviate clutter and occlusion in the resulting visualization. However, there is an absence of systematic guidelines for users to evaluate (both quantitatively and visually) the appropriate clustering technique and similarity measures for streamline and pathline curves. In this work, we provide an overview of a number of prevailing curve clustering techniques. We then perform a comprehensive experimental study to qualitatively and quantitatively compare these clustering techniques coupled with popular similarity measures used in the flow visualization literature. Based on our experimental results, we derive empirical guidelines for selecting the appropriate clustering technique and similarity measure given the requirements of the visualization task. We believe our work will inform the task of generating meaningful reduced representations for large-scale flow data and inspire the continuous investigation of a more refined guidance on clustering technique selection.

8.
IEEE Trans Vis Comput Graph ; 27(9): 3626-3643, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32305921

RESUMEN

Glyphs representing complex behavior provide a useful and common means of visualizing multivariate data. However, due to their complex shape, overlapping, and occlusion of glyphs is a common and prominent limitation. This limits the number of discreet data tuples that can be displayed in a given image. Using a real-world application, glyphs are used to depict agent behavior in a call center. However, many call centers feature thousands of agents. A standard approach representing thousands of agents with glyphs does not scale. To accommodate the visualization incorporating thousands of glyphs we develop clustering of overlapping glyphs into a single parent glyph. This hierarchical glyph represents the mean value of all child agent glyphs, removing overlap and reduTcing visual clutter. Multi-variate clustering techniques are explored and developed in collaboration with domain experts in the call center industry. We implement dynamic control of glyph clusters according to zoom level and customized distance metrics, to utilize image space with reduced overplotting and cluttering. We demonstrate our technique with examples and a usage scenario using real-world call-center data to visualize thousands of call center agents, revealing insight into their behavior and reporting feedback from expert call-center analysts.

9.
IEEE Trans Vis Comput Graph ; 26(1): 270-279, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31425099

RESUMEN

Asymmetric tensor fields have found applications in many science and engineering domains, such as fluid dynamics. Recent advances in the visualization and analysis of 2D asymmetric tensor fields focus on pointwise analysis of the tensor field and effective visualization metaphors such as colors, glyphs, and hyperstreamlines. In this paper, we provide a novel multi-scale topological analysis framework for asymmetric tensor fields on surfaces. Our multi-scale framework is based on the notions of eigenvalue and eigenvector graphs. At the core of our framework are the identification of atomic operations that modify the graphs and the scale definition that guides the order in which the graphs are simplified to enable clarity and focus for the visualization of topological analysis on data of different sizes. We also provide efficient algorithms to realize these operations. Furthermore, we provide physical interpretation of these graphs. To demonstrate the utility of our system, we apply our multi-scale analysis to data in computational fluid dynamics.

10.
Structure ; 27(11): 1617-1623, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31564470

RESUMEN

Visualization of molecular structures is one of the most common tasks carried out by structural biologists, typically using software, such as Chimera, COOT, PyMOL, or VMD. In this Perspective article, we outline how past developments in computer graphics and data visualization have expanded the understanding of biomolecular function, and we summarize recent advances that promise to further transform structural biology. We also highlight how progress in molecular graphics has been impeded by communication barriers between two communities: the computer scientists driving these advances, and the structural and computational biologists who stand to benefit. By pointing to canonical papers and explaining technical progress underlying new graphical developments in simple terms, we aim to improve communication between these communities; this, in turn, would help shape future developments in molecular graphics.


Asunto(s)
Gráficos por Computador , Biología Molecular/métodos , Comunicación Interdisciplinaria , Modelos Estructurales
11.
IEEE Comput Graph Appl ; 39(6): 46-60, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31603814

RESUMEN

Visual analytics tools integrate provenance recording to externalize analytic processes or user insights. Provenance can be captured on varying levels of detail, and in turn activities can be characterized from different granularities. However, current approaches do not support inferring activities that can only be characterized across multiple levels of provenance. We propose a task abstraction framework that consists of a three stage approach, composed of 1) initializing a provenance task hierarchy, 2) parsing the provenance hierarchy by using an abstraction mapping mechanism, and 3) leveraging the task hierarchy in an analytical tool. Furthermore, we identify implications to accommodate iterative refinement, context, variability, and uncertainty during all stages of the framework. We describe a use case which exemplifies our abstraction framework, demonstrating how context can influence the provenance hierarchy to support analysis. The article concludes with an agenda, raising and discussing challenges that need to be considered for successfully implementing such a framework.

12.
IEEE Comput Graph Appl ; 39(2): 95-103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30908186

RESUMEN

This paper explores the meaning of the term "skill" in the context of information (data) visualization and its place in the labor market. It examines the visualization skills and software competencies that are in high demand in industry today, and the ramifications for teaching Data Visualization for professional students in higher education.

13.
IEEE Trans Vis Comput Graph ; 25(3): 1575-1590, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29994153

RESUMEN

The Parallel Coordinates plot is a popular tool for the visualization of high-dimensional data. One of the main challenges when using parallel coordinates is occlusion and overplotting resulting from large data sets. Brushing is a popular approach to address these challenges. Since its conception, limited improvements have been made to brushing both in the form of visual design and functional interaction. We present a set of novel, smart brushing techniques that enhance the standard interactive brushing of a parallel coordinates plot. We introduce two new interaction concepts: Higher-order, sketch-based brushing, and smart, data-driven brushing. Higher-order brushes support interactive, flexible, n-dimensional pattern searches involving an arbitrary number of dimensions. Smart, data-driven brushing provides interactive, real-time guidance to the user during the brushing process based on derived meta-data. In addition, we implement a selection of novel enhancements and user options that complement the two techniques as well as enhance the exploration and analytical ability of the user. We demonstrate the utility and evaluate the results using a case study with a large, high-dimensional, real-world telecommunication data set and we report domain expert feedback from the data suppliers.

14.
Artículo en Inglés | MEDLINE | ID: mdl-30130215

RESUMEN

Despite significant advances in the analysis and visualization of unsteady flow, the interpretation of it's behavior still remains a challenge. In this work, we focus on the linear correlation and non-linear dependency of different physical attributes of unsteady flows to aid their study from a new perspective. Specifically, we extend the existing spatial correlation quantification, i.e. the Local Correlation Coefficient (LCC), to the spatio-temporal domain to study the correlation of attribute-pairs from both the Eulerian and Lagrangian views. To study the dependency among attributes, which need not be linear, we extend and compute the mutual information (MI) among attributes over time. To help visualize and interpret the derived correlation and dependency among attributes associated with a particle, we encode the correlation and dependency values on individual pathlines. Finally, to utilize the correlation and MI computation results to identify regions with interesting flow behavior, we propose a segmentation strategy of the flow domain based on the ranking of the strength of the attributes relations. We have applied our correlation and dependency metrics to a number of 2D and 3D unsteady flows with varying spatio-temporal kernel sizes to demonstrate and assess their effectiveness.

15.
IEEE Comput Graph Appl ; 36(3): 72-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25643400

RESUMEN

Organizing sports video data for performance analysis can be challenging, especially in cases involving multiple attributes and when the criteria for sorting frequently changes depending on the user's task. The proposed visual analytic system enables users to specify a sort requirement in a flexible manner without depending on specific knowledge about individual sort keys. The authors use regression techniques to train different analytical models for different types of sorting requirements and use visualization to facilitate knowledge discovery at different stages of the process. They demonstrate the system with a rugby case study to find key instances for analyzing team and player performance. Organizing sports video data for performance analysis can be challenging in cases with multiple attributes, and when sorting frequently changes depending on the user's task. As this video shows, the proposed visual analytic system allows interactive data sorting and exploration. https://youtu.be/Cs6SLtPVDQQ.

16.
IEEE Trans Vis Comput Graph ; 22(3): 1248-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26441450

RESUMEN

Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

17.
Mov Ecol ; 3(1): 29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26392863

RESUMEN

BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information. DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space. CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.

18.
IEEE Trans Vis Comput Graph ; 19(8): 1342-53, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23744264

RESUMEN

Streamline seeding rakes are widely used in vector field visualization. We present new approaches for calculating similarity between integral curves (streamlines and pathlines). While others have used similarity distance measures, the computational expense involved with existing techniques is relatively high due to the vast number of euclidean distance tests, restricting interactivity and their use for streamline seeding rakes. We introduce the novel idea of computing streamline signatures based on a set of curve-based attributes. A signature produces a compact representation for describing a streamline. Similarity comparisons are performed by using a popular statistical measure on the derived signatures. We demonstrate that this novel scheme, including a hierarchical variant, produces good clustering results and is computed over two orders of magnitude faster than previous methods. Similarity-based clustering enables filtering of the streamlines to provide a nonuniform seeding distribution along the seeding object. We show that this method preserves the overall flow behavior while using only a small subset of the original streamline set. We apply focus + context rendering using the clusters which allows for faster and easier analysis in cases of high visual complexity and occlusion. The method provides a high level of interactivity and allows the user to easily fine tune the clustering results at runtime while avoiding any time-consuming recomputation. Our method maintains interactive rates even when hundreds of streamlines are used.

19.
IEEE Trans Vis Comput Graph ; 18(2): 283-98, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21282857

RESUMEN

Vector field visualization techniques have evolved very rapidly over the last two decades, however, visualizing vector fields on complex boundary surfaces from computational flow dynamics (CFD) still remains a challenging task. In part, this is due to the large, unstructured, adaptive resolution characteristics of the meshes used in the modeling and simulation process. Out of the wide variety of existing flow field visualization techniques, vector field clustering algorithms offer the advantage of capturing a detailed picture of important areas of the domain while presenting a simplified view of areas of less importance. This paper presents a novel, robust, automatic vector field clustering algorithm that produces intuitive and insightful images of vector fields on large, unstructured, adaptive resolution boundary meshes from CFD. Our bottom-up, hierarchical approach is the first to combine the properties of the underlying vector field and mesh into a unified error-driven representation. The motivation behind the approach is the fact that CFD engineers may increase the resolution of model meshes according to importance. The algorithm has several advantages. Clusters are generated automatically, no surface parameterization is required, and large meshes are processed efficiently. The most suggestive and important information contained in the meshes and vector fields is preserved while less important areas are simplified in the visualization. Users can interactively control the level of detail by adjusting a range of clustering distance measure parameters. We describe two data structures to accelerate the clustering process. We also introduce novel visualizations of clusters inspired by statistical methods. We apply our method to a series of synthetic and complex, real-world CFD meshes to demonstrate the clustering algorithm results.

20.
IEEE Trans Vis Comput Graph ; 18(5): 767-82, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21690641

RESUMEN

Morse decomposition provides a numerically stable topological representation of vector fields that is crucial for their rigorous interpretation. However, Morse decomposition is not unique, and its granularity directly impacts its computational cost. In this paper, we propose an automatic refinement scheme to construct the Morse Connection Graph (MCG) of a given vector field in a hierarchical fashion. Our framework allows a Morse set to be refined through a local update of the flow combinatorialization graph, as well as the connection regions between Morse sets. The computation is fast because the most expensive computation is concentrated on a small portion of the domain. Furthermore, the present work allows the generation of a topologically consistent hierarchy of MCGs, which cannot be obtained using a global method. The classification of the extracted Morse sets is a crucial step for the construction of the MCG, for which the Poincare´ index is inadequate. We make use of an upper bound for the Conley index, provided by the Betti numbers of an index pair for a translation along the flow, to classify the Morse sets. This upper bound is sufficiently accurate for Morse set classification and provides supportive information for the automatic refinement process. An improved visualization technique for MCG is developed to incorporate the Conley indices. Finally, we apply the proposed techniques to a number of synthetic and realworld simulation data to demonstrate their utility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...