Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838541

RESUMEN

Resistance to conventional treatments renders urgent the discovery of new therapeutic molecules. Plant specialized metabolites such as phenolamides, a subclass of phenolic compounds, whose accumulation in tomato plants is mediated by the biotic and abiotic environment, constitute a source of natural molecules endowed with potential antioxidant, antimicrobial as well as anti-inflammatory properties. The aim of our study was to investigate whether three major phenolamides found in Tuta absoluta-infested tomato leaves exhibit antimicrobial, cytotoxic and/or anti-inflammatory properties. One of them, N1,N5,N14-tris(dihydrocaffeoyl)spermine, was specifically synthesized for this study. The three phenolamides showed low to moderate antibacterial activities but were able to counteract the LPS pro-inflammatory effect on THP-1 cells differentiated into macrophages. Extracts made from healthy but not T. absoluta-infested tomato leaf extracts were also able to reduce inflammation using the same cellular approach. Taken together, these results show that phenolamides from tomato leaves could be interesting alternatives to conventional drugs.


Asunto(s)
Lepidópteros , Mariposas Nocturnas , Solanum lycopersicum , Animales
2.
Metabolites ; 12(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35736416

RESUMEN

Tomato plants are attacked by a variety of herbivore pests and among them, the leafminer Tuta absoluta, which is currently a major threat to global tomato production. Although the commercial tomato is susceptible to T. absoluta attacks, a better understanding of the defensive plant responses to this pest will help in defining plant resistance traits and broaden the range of agronomic levers that can be used for an effective integrated pest management strategy over the crop cycle. In this study, we developed an integrative approach combining untargeted metabolomic and transcriptomic analyses to characterize the local and systemic metabolic responses of young tomato plants to T. absoluta larvae herbivory. From metabolomic analyses, the tomato response appeared to be both local and systemic, with a local response in infested leaves being much more intense than in other parts of the plant. The main response was a massive accumulation of phenolamides with great structural diversity, including rare derivatives composed of spermine and dihydrocinnamic acids. The accumulation of this family of specialized metabolites was supported by transcriptomic data, which showed induction of both phenylpropanoid and polyamine precursor pathways. Moreover, our transcriptomic data identified two genes strongly induced by T. absoluta herbivory, that we functionally characterized as putrescine hydroxycinnamoyl transferases. They catalyze the biosynthesis of several phenolamides, among which is caffeoylputrescine. Overall, this study provided new mechanistic clues of the tomato/T. absoluta interaction.

3.
Metabolites ; 11(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34940606

RESUMEN

During its development, the leaf undergoes profound metabolic changes to ensure, among other things, its growth. The subcellular metabolome of tomato leaves was studied at four stages of leaf development, with a particular emphasis on the composition of the vacuole, a major actor of cell growth. For this, leaves were collected at different positions of the plant, corresponding to different developmental stages. Coupling cytology approaches to non-aqueous cell fractionation allowed to estimate the subcellular concentrations of major compounds in the leaves. The results showed major changes in the composition of the vacuole across leaf development. Thus, sucrose underwent a strong allocation, being mostly located in the vacuole at the beginning of development and in the cytosol at maturity. Furthermore, these analyses revealed that the vacuole, rather rich in secondary metabolites and sugars in the growth phases, accumulated organic acids thereafter. This result suggests that the maintenance of the osmolarity of the vacuole of mature leaves would largely involve inorganic molecules.

4.
New Phytol ; 231(5): 1923-1939, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33978969

RESUMEN

Furanocoumarins are phytoalexins often cited as an example to illustrate the arms race between plants and herbivorous insects. They are distributed in a limited number of phylogenetically distant plant lineages, but synthesized through a similar pathway, which raised the question of a unique or multiple emergence in higher plants. The furanocoumarin pathway was investigated in the fig tree (Ficus carica, Moraceae). Transcriptomic and metabolomic approaches led to the identification of CYP76F112, a cytochrome P450 catalyzing an original reaction. CYP76F112 emergence was inquired using phylogenetics combined with in silico modeling and site-directed mutagenesis. CYP76F112 was found to convert demethylsuberosin into marmesin with a very high affinity. This atypical cyclization reaction represents a key step within the polyphenol biosynthesis pathway. CYP76F112 evolutionary patterns suggests that the marmesin synthase activity appeared recently in the Moraceae family, through a lineage-specific expansion and diversification. The characterization of CYP76F112 as the first known marmesin synthase opens new prospects for the use of the furanocoumarin pathway. It also supports the multiple acquisition of furanocoumarin in angiosperms by convergent evolution, and opens new perspectives regarding the ability of cytochromes P450 to evolve new functions related to plant adaptation to their environment.


Asunto(s)
Ficus , Furocumarinas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Filogenia
5.
Metabolites ; 11(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946628

RESUMEN

Phagnalon saxatile subsp. saxatile is a wild species widespread in Algeria which is utilized for medicinal purposes as analgesic and anticholesterolemic. However, information is still scarce regarding its phytochemical content. The objective of this study was to identify and quantify the phenolic compounds from different extracts of its leafy stems. For this purpose, the effects of four extracting solvents were investigated on the content of phenolic compounds and the antioxidant activity of this plant. The extracts prepared with polar solvents (methanol and water) contained higher amounts of phenolic compounds and showed better antioxidant activity than the extracts with apolar solvents (hexane, dichloromethane). The methanolic extract, richest in total phenolic and total flavonoid, had significant antioxidant activity as regarded by DPPH° scavenging capacity (IC50 of 5.5 µg/mL), ABTS+° scavenging capacity (IC50 of 63.8 µg/mL) and inhibition of oxidation of linoleic acid (IC50 of 22.7 µg/mL), when compared to synthetic antioxidants. Chlorogenic acids and several flavonoids were identified and quantified by UPLC-DAD-MSn. The di-O-caffeoylquinic acids isomers were the most concentrated phenolics (25.4 mg/g DW) in the methanolic extract.

6.
J Exp Bot ; 72(7): 2334-2355, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33315095

RESUMEN

Phenolamides represent a family of specialized metabolites, consisting of the association of hydroxycinnamic acid derivatives with aliphatic or aromatic amines. Since the discovery of the first phenolamide in the late 1940s, decades of phytochemical analyses have revealed a high structural diversity for this family and a wide distribution in the plant kingdom. The occurrence of structurally diverse phenolamides in almost all plant organs has led to early hypotheses on their involvement in floral initiation and fertility, as well as plant defense against biotic and abiotic stress. In the present work, we critically review the literature ascribing functional hypotheses to phenolamides and recent evidence on the control of their biosynthesis in response to biotic stress. We additionally provide a phylogenetic analysis of the numerous N-hydroxycinnamoyltransferases involved in the synthesis of phenolamides and discuss the potential role of other enzyme families in their diversification. The data presented suggest multiple evolutionary events that contributed to the extension of the taxonomic distribution and diversity of phenolamides.


Asunto(s)
Ácidos Cumáricos , Plantas , Evolución Biológica , Filogenia , Plantas/genética
7.
Biomed Pharmacother ; 131: 110762, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33152925

RESUMEN

Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.


Asunto(s)
Amidas/farmacología , Fenoles/farmacología , Plantas Medicinales/química , Amidas/química , Amidas/aislamiento & purificación , Animales , Humanos , Fenoles/química , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología
8.
Metabolites ; 9(7)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340592

RESUMEN

Stresses such as wounding or atmospheric pollutant exposure have a significant impact on plant fitness. Since it has been widely described that the metabolome directly reflects plant physiological status, a way to assess this impact is to perform a global metabolomic analysis. In this study, we investigated the effect of two abiotic stresses (mechanical wounding and ozone exposure) on parsnip metabolic balance using a liquid chromatography-mass spectrometry-based untargeted metabolomic approach. For this purpose, parsnip leaves were submitted to an acute ozone exposure or were mechanically wounded and sampled 24, 48, and 72 h post-treatment. Multivariate and univariate statistical analyses highlighted numerous differentially-accumulated metabolic features as a function of time and treatment. Mechanical wounding led to a more differentiated response than ozone exposure. We found that the levels of coumarins and fatty acyls increased in wounded leaves, while flavonoid concentration decreased in the same conditions. These results provide an overview of metabolic destabilization through differentially-accumulated compounds and provide a better understanding of global plant metabolic changes in defense mechanisms.

9.
Planta ; 249(3): 617-633, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30689053

RESUMEN

Ficus species have adapted to diverse environments and pests by developing physical or chemical protection strategies. Physical defences are based on the accumulation of minerals such as calcium oxalate crystals, amorphous calcium carbonates and silica that lead to tougher plants. Additional cellular structures such as non-glandular trichomes or laticifer cells make the leaves rougher or sticky upon injury. Ficus have also established structures that are able to produce specialized metabolites (alkaloids, terpenoids, and phenolics) or proteins (proteases, protease inhibitors, oxidases, and chitinases) that are toxic to predators. All these defence mechanisms are distributed throughout the plant and can differ depending on the genotype, the stage of development or the environment. In this review, we present an overview of these strategies and discuss how these complementary mechanisms enable effective and flexible adaptation to numerous hostile environments.


Asunto(s)
Ficus/fisiología , Ficus/inmunología , Ficus/microbiología , Ficus/parasitología , Herbivoria , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología
10.
Front Plant Sci ; 9: 1396, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323821

RESUMEN

Foliar pathogens face heterogeneous environments depending on the maturity of leaves they interact with. In particular, nutrient availability as well as defense levels may vary significantly, with opposing effects on the success of infection. The present study tested which of these factors have a dominant effect on the pathogen's development. Poplar leaf disks of eight maturity levels were inoculated with the poplar rust fungus Melampsora larici-populina using an innovative single-spore inoculation procedure. A set of quantitative fungal traits (infection efficiency, latent period, uredinia size, mycelium quantity, sporulation rate, sporulation capacity, and spore volume) was measured on each infected leaf disk. Uninfected parts of the leaves were analyzed for their nutrient (sugars, total C and N) and defense compounds (phenolics) content. We found that M. larici-populina is more aggressive on more mature leaves as indicated by wider uredinia and a higher sporulation rate. Other traits varied independently from each other without a consistent pattern. None of the pathogen traits correlated with leaf sugar, total C, or total N content. In contrast, phenolic contents (flavonols, hydroxycinnamic acid esters, and salicinoids) were negatively correlated with uredinia size and sporulation rate. The pathogen's fitness appeared to be more constrained by the constitutive plant defense level than limited by nutrient availability, as evident in the decrease in sporulation.

11.
J Insect Physiol ; 99: 130-138, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28392206

RESUMEN

The leafminer Tuta absoluta (Meyrick) is a major pest of the tomato crop and its development rate is known to decline when nitrogen availability for crop growth is limited. Because N limitation reduces plant primary metabolism but enhances secondary metabolism, one can infer that the slow larval development arises from lower leaf nutritive value and/or higher plant defence. As an attempt to study the first alternative, we examined the tomato-T. absoluta interaction in terms of resource supply by leaves and intake by larvae. Tomato plants were raised under controlled conditions on N-sufficient vs. N-limited complete nutrient solutions. Plants were kept healthy or artificially inoculated with larvae for seven days. Serial harvests were taken and the N, C, dry mass and water contents were determined in roots, stems and leaves. Leaf and mine areas were also measured and the N, C, dry mass and water surface densities were calculated in order to characterize the diet of the larvae. The infestation of a specific leaf lessened its local biomass by 8-26%, but this effect was undetectable at the whole plant scale. Infestation markedly increased resource density per unit leaf area (water, dry mass, C and N) suggesting that the insect induced changes in leaf composition. Nitrogen limitation lessened whole plant growth (by 50%) and infested leaflet growth (by 32-44%). It produced opposite effects on specific resource density per unit area, increasing that of dry mass and C while decreasing water and N. These changes were ineffective on insect mining activity, but slowed down larval development. Under N limitation, T. absoluta consumed less water and N but more dry mass and C. The resulting consequences were a 50-70% increase of C:N stoichiometry in their diet and the doubling of faeces excretion. The observed limitation of larval development is therefore consistent with a trophic explanation caused by low N and/or water intakes.


Asunto(s)
Mariposas Nocturnas/fisiología , Nitrógeno/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Animales , Carbono/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Solanum lycopersicum/química , Mariposas Nocturnas/crecimiento & desarrollo , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Agua
12.
New Phytol ; 213(1): 287-299, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27500520

RESUMEN

Wood, also called secondary xylem, is a specialized vascular tissue constituted by different cell types that undergo a differentiation process involving deposition of thick, lignified secondary cell walls. The mechanisms needed to control the extent of lignin deposition depending on the cell type and the differentiation stage are far from being fully understood. We found that the Eucalyptus transcription factor EgMYB1, which is known to repress lignin biosynthesis, interacts specifically with a linker histone variant, EgH1.3. This interaction enhances the repression of EgMYB1's target genes, strongly limiting the amount of lignin deposited in xylem cell walls. The expression profiles of EgMYB1 and EgH1.3 overlap in xylem cells at early stages of their differentiation as well as in mature parenchymatous xylem cells, which have no or only thin lignified secondary cell walls. This suggests that a complex between EgMYB1 and EgH1.3 integrates developmental signals to prevent premature or inappropriate lignification of secondary cell walls, providing a mechanism to fine-tune the differentiation of xylem cells in time and space. We also demonstrate a role for a linker histone variant in the regulation of a specific developmental process through interaction with a transcription factor, illustrating that plant linker histones have other functions beyond chromatin organization.


Asunto(s)
Eucalyptus/metabolismo , Histonas/metabolismo , Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Madera/metabolismo , Arabidopsis/genética , Diferenciación Celular , Núcleo Celular/metabolismo , Pared Celular/metabolismo , Eucalyptus/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Unión Proteica , Activación Transcripcional/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
13.
Front Plant Sci ; 7: 1422, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27713753

RESUMEN

Comparative phylogenetic analyses of the R2R3-MYB transcription factor family revealed that five subgroups were preferentially found in woody species and were totally absent from Brassicaceae and monocots (Soler et al., 2015). Here, we analyzed one of these subgroups (WPS-I) for which no gene had been yet characterized. Most Eucalyptus members of WPS-I are preferentially expressed in the vascular cambium, the secondary meristem responsible for tree radial growth. We focused on EgMYB88, which is the most specifically and highly expressed in vascular tissues, and showed that it behaves as a transcriptional activator in yeast. Then, we functionally characterized EgMYB88 in both transgenic Arabidopsis and poplar plants overexpressing either the native or the dominant repression form (fused to the Ethylene-responsive element binding factor-associated Amphiphilic Repression motif, EAR). The transgenic Arabidopsis lines had no phenotype whereas the poplar lines overexpressing EgMYB88 exhibited a substantial increase in the levels of the flavonoid catechin and of some salicinoid phenolic glycosides (salicortin, salireposide, and tremulacin), in agreement with the increase of the transcript levels of landmark biosynthetic genes. A change in the lignin structure (increase in the syringyl vs. guaiacyl, S/G ratio) was also observed. Poplar lines overexpressing the EgMYB88 dominant repression form did not show a strict opposite phenotype. The level of catechin was reduced, but the levels of the salicinoid phenolic glycosides and the S/G ratio remained unchanged. In addition, they showed a reduction in soluble oligolignols containing sinapyl p-hydroxybenzoate accompanied by a mild reduction of the insoluble lignin content. Altogether, these results suggest that EgMYB88, and more largely members of the WPS-I group, could control in cambium and in the first layers of differentiating xylem the biosynthesis of some phenylpropanoid-derived secondary metabolites including lignin.

14.
J Theor Biol ; 402: 144-57, 2016 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-27164436

RESUMEN

In plants, the partitioning of carbon resources between growth and defense is detrimental for their development. From a metabolic viewpoint, growth is mainly related to primary metabolism including protein, amino acid and lipid synthesis, whereas defense is based notably on the biosynthesis of a myriad of secondary metabolites. Environmental factors, such as nitrate fertilization, impact the partitioning of carbon resources between growth and defense. Indeed, experimental data showed that a shortage in the nitrate fertilization resulted in a reduction of the plant growth, whereas some secondary metabolites involved in plant defense, such as phenolic compounds, accumulated. Interestingly, sucrose, a key molecule involved in the transport and partitioning of carbon resources, appeared to be under homeostatic control. Based on the inflow/outflow properties of sucrose homeostatic regulation we propose a global model on how the diversion of the primary carbon flux into the secondary phenolic pathways occurs at low nitrate concentrations. The model can account for the accumulation of starch during the light phase and the sucrose remobilization by starch degradation during the night. Day-length sensing mechanisms for variable light-dark regimes are discussed, showing that growth is proportional to the length of the light phase. The model can describe the complete starch consumption during the night for plants adapted to a certain light/dark regime when grown on sufficient nitrate and can account for an increased accumulation of starch observed under nitrate limitation.


Asunto(s)
Ciclo del Carbono/efectos de la radiación , Luz , Modelos Biológicos , Metabolismo Secundario/efectos de la radiación , Ciclo del Carbono/efectos de los fármacos , Oscuridad , Homeostasis/efectos de los fármacos , Homeostasis/efectos de la radiación , Cinética , Nitratos/farmacología , Fotoperiodo , Metabolismo Secundario/efectos de los fármacos , Almidón/metabolismo , Sacarosa/metabolismo
15.
Plant Sci ; 244: 57-67, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26810453

RESUMEN

Induced chemical defence is a cost-efficient protective strategy, whereby plants induce the biosynthesis of defence-related compounds only in the case of pest attack. Plant responses that are pathogen specific lower the cost of defence, compared to constitutive defence. As nitrogen availability (N) in the root zone is one of the levers mediating the concentration of defence-related compounds in plants, we investigated its influence on response traits of tomato to two pathogenic bacteria, growing plants hydroponically at low or high N supply. Using two sets of plants for each level of N supply, we inoculated one leaf of one set of plants with Pseudomonas syringae, and inoculated the stem of other set of plants with Pseudomonas corrugata. Tomato response traits (growth, metabolites) were investigated one and twelve days after inoculation. In infected areas, P. syringae decreased carbohydrate concentrations whereas they were increased by P. corrugata. P. syringae mediated a redistribution of carbon within the phenylpropanoid pathway, regardless of N supply: phenolamides, especially caffeoylputrescine, were stimulated, impairing defence-related compounds such as chlorogenic acid. Inoculation of P. syringae produced strong and sustainable systemic responses. By contrast, inoculation of P. corrugata induced local and transient responses. The effects of pathogens on plant growth and leaf gas exchanges appeared to be independant of N supply. This work shows that the same genus of plant pathogens with different infection strategies can mediate contrasted plant responses.


Asunto(s)
Nitrógeno/metabolismo , Pseudomonas/patogenicidad , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo
16.
Food Chem ; 173: 382-90, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25466036

RESUMEN

This study falls within the framework of the industrial exploitation of by-products of the prickly pear (Opuntia ficus-indica). The study aims to evaluate the use of hydro-ethanolic extract of prickly pear peels as a substitute of vitamin E used as antioxidant in margarine preservation. The extract was rich in total phenolics (1512.58 mg GAE/100 g DM). HPLC-DAD-ESI-MS(n) analyses allowed the identification of sixteen compounds belonging to hydroxybenzoic acids, hydroxycinnamic acids and flavonoids. The extract displayed a reducing power and an antiradical activity that were respectively similar to and lower than the two antioxidant standards quercetin and butylated hydroxyanisole. Tests conducted at laboratory and pilot scales showed that the margarines elaborated with peel extract were more resistant to oxidation than the margarine reference with vitamin E. In addition, neither the physicochemical nor the microbiological properties were modified. Prickly pear peels contain bioactive substances that could be used in different food sectors.


Asunto(s)
Antioxidantes/química , Conservación de Alimentos/métodos , Conservantes de Alimentos/química , Margarina/análisis , Opuntia/química , Extractos Vegetales/química , Almacenamiento de Alimentos , Frutas/química , Oxidación-Reducción
17.
Plant Physiol ; 166(3): 1149-61, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25082892

RESUMEN

Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed high rates of CYP76C gene duplication and loss in Brassicaceae, suggesting the association of the CYP76C subfamily with species-specific adaptive functions. Gene differential expression and enzyme functional specialization in Arabidopsis thaliana, including metabolism of different monoterpenols and formation of different products, support this hypothesis. In addition to linalool metabolism, CYP76C1, CYP76C2, and CYP76C4 metabolized herbicides belonging to the class of phenylurea. Their ectopic expression in the whole plant conferred herbicide tolerance. CYP76Cs from A. thaliana. thus provide a first example of promiscuous cytochrome P450 enzymes endowing effective metabolism of both natural and xenobiotic compounds. Our data also suggest that the CYP76C gene family provides a suitable genetic background for a quick evolution of herbicide resistance.


Asunto(s)
Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbicidas/metabolismo , Familia de Multigenes , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Genómica , Monoterpenos/metabolismo , Oxidación-Reducción , Compuestos de Fenilurea/metabolismo , Filogenia
18.
Plant Sci ; 224: 62-73, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24908507

RESUMEN

Phenolics are implicated in the defence strategies of many plant species rendering their concentration increase of putative practical interest in the field of crop protection. Little attention has been given to the nature, concentration and distribution of phenolics within vegetative organs of tomato (Solanum lycopersicum. L) as compared to fruits. In this study, we extensively characterized the phenolics in leaves, stems and roots of nine tomato cultivars using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS(n)) and assessed the impact of low nitrogen (LN) availability on their accumulation. Thirty-one phenolics from the four sub-classes, hydroxycinnamoyl esters, flavonoids, anthocyanins and phenolamides were identified, five of which had not previously been reported in these tomato organs. A higher diversity and concentration of phenolics was found in leaves than in stems and roots. The qualitative distribution of these compounds between plant organs was similar for the nine cultivars with the exception of Micro-Tom because of its significantly higher phenolic concentrations in leaves and stems as compared to roots. With few exceptions, the influence of the LN treatment on the three organs of all cultivars was to increase the concentrations of hydroxycinnamoyl esters, flavonoids and anthocyanins and to decrease those of phenolamides. This impact of LN was greater in roots than in leaves and stems. Nitrogen nutrition thus appears as a means of modulating the concentration and composition of organ phenolics and their distribution within the whole plant.


Asunto(s)
Flavonoides/metabolismo , Nitrógeno/deficiencia , Fenoles/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Solanum lycopersicum/metabolismo , Antocianinas/metabolismo , Nitrógeno/metabolismo
19.
Food Chem ; 139(1-4): 796-803, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23561175

RESUMEN

The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods.


Asunto(s)
Opuntia/química , Fenoles/química , Extractos Vegetales/química , Aceites de Plantas/química , Semillas/química , Cromatografía de Gases , Ácidos Grasos/química , Espectrometría de Masas
20.
Phytochemistry ; 88: 25-33, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23312460

RESUMEN

Plant growth and defence are both fuelled by compounds synthesized from a common pool of carbon and nitrogen, implying the existence of a competition for carbon and nitrogen allocation to both metabolisms. The ratio of carbon to nitrogen (C:N) of an organ is often regarded as a convenient indicator of growth and quality. The purpose of this work was to assess whether or not it is possible to extend its use to characterize the trade-off between growth and defence processes. Therefore, we calculated C:N ratios in the pool of resources and in the total plant, and correlated them to the concentrations of diverse compounds of the primary and secondary metabolisms in young tomatoes. Plants were grown hydroponically at N availabilities either limiting (0.1 mM) or not (7 mM) for growth in two glasshouses maintained either under ambient or enriched (700 vpm) air CO(2). These conditions yielded a large array of C:N in fully developed leaves, developing leaves, stem and roots, sampled 27, 35 and 47 days after sowing. Growth parameters and tissue concentrations of primary metabolites (carbohydrates, starch), defence-related compounds (polyphenols, glycoalkaloids), lignin, nitrate, ammonium, C and N were analyzed. Net CO(2) exchange rate was also measured at the last sampling date. Low N limited plant growth more than photosynthesis. The C:N in the resource pool was far higher than the total C:N. Starch was the most responsive compound, attaining high concentration under high C:N, whereas lignin remained stable. Chlorogenic acid, rutin, kaempferol-rutinoside and tomatine concentrations correlated positively to C:N. The same patterns were observed for most organs and molecules, except soluble carbohydrates in fully developed leaves whose concentration was not influenced. Among the organs, developing leaves showed the highest concentrations of secondary compounds and were the most responsive to C:N variations. Neither the biochemical nature of the compounds (C-based or N- containing metabolites) nor the calculation mode of C:N, influenced the patterns observed. Within the range of N availabilities considered (up to N limitation but not deficiency), the C:N can be considered as a good indicator of the secondary compounds concentrations in organs, especially for those involved in the chemical defence.


Asunto(s)
Carbono/química , Resistencia a la Enfermedad , Nitrógeno/química , Fenómenos Fisiológicos de las Plantas , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Biomasa , Carbono/metabolismo , Hidroponía , Solanum lycopersicum/crecimiento & desarrollo , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...