Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337313

RESUMEN

Bending is one of the dominant material deformation mechanisms that occurs during the forming process of unidirectional (UD) thermoplastic tapes. Experimental characterization of the bending behavior at processing temperatures is crucial to obtaining close-to-reality data sets for process analysis or material modeling for process simulation. The main purpose of this study is to characterize to a high degree of accuracy the temperature-dependent bending behavior of single and multi-ply specimens of carbon fiber-reinforced polycarbonate (PC/CF) UD tapes at processing temperatures, which implies a molten state of the thermoplastic matrix. The application of the rotation bending test using a customized fixture may come with systematic deviations in the measured moment that result from a pivot offset or an effective clearance that is unknown under realistic test conditions. The present research analyzes these effects with analytical methods, experimental investigations, and simulations using a finite element model. In this context, a compensation method for the toe-in effect is evaluated. With this approach, we were able to obtain reliable data and characterize the bending resistance within the desired processing window. The data reveal a major drop in bending resistance between 200 °C and 250 °C and a less significant decrease between 250 °C and 300 °C. Analysis of the thickness-normalized bending resistances indicates a non-linear relationship between specimen thickness and measured moment but an increasing shear-dominated characteristic at higher temperatures.

2.
Polymers (Basel) ; 15(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37688146

RESUMEN

Thermoplastic tapes are commonly processed by the rapid and efficient stamp forming process. During this forming process, the individual unidirectional tapes of the composite stack move relative to each other and relative to the surface of the tool while being in contact with the corresponding counterpart. As a result, the material exhibits a certain resistance against this movement, which is generally dependent on velocity, normal pressure, and temperature. Therefore, this work investigates the ply/tool and ply/ply slippage of unidirectional, carbon fiber reinforced polycarbonate tapes and provides an alternative implementation of the experimentally observed slippage using cohesive zone modeling. The backbone of the modeling approach is an experimental data set obtained from pull-through experiments. In comparison to common slippage or friction theories, the force plateau of thermoplastic UD tapes at elevated temperatures is observed after an initial force peak has been overcome. For both configurations, ply/tool and ply/ply, a reduction of the initial force peak was observed for increasing temperature. Furthermore, the resulting plateau force value is at least 36% higher in the ply/ply configuration compared to the ply/tool configuration at 200 °C. The derived cohesive zone model allows for accurate modeling of the initial force peak and the plateau.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA