Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585724

RESUMEN

Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.

2.
Mol Ther Oncol ; 32(2): 200783, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38595983

RESUMEN

Oncolytic adenoviruses (Ads) stand out as a promising strategy for the targeted infection and lysis of tumor cells, with well-established clinical utility across various malignancies. This study delves into the therapeutic potential of oncolytic Ads in the context of neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumors (MPNSTs). Specifically, we evaluate conditionally replicative adenoviruses (CRAds) driven by the cyclooxygenase 2 (COX2) promoter, as selective agents against MPNSTs, demonstrating their preferential targeting of MPNST cells compared with non-malignant Schwann cell control. COX2-driven CRAds, particularly those with modified fiber-knobs exhibit superior binding affinity toward MPNST cells and demonstrate efficient and preferential replication and lysis of MPNST cells, with minimal impact on non-malignant control cells. In vivo experiments involving intratumoral CRAd injections in immunocompromised mice with human MPNST xenografts significantly extend survival and reduce tumor growth rate compared with controls. Moreover, in immunocompetent mouse models with MPNST-like allografts, CRAd injections induce a robust infiltration of CD8+ T cells into the tumor microenvironment (TME), indicating the potential to promote a pro-inflammatory response. These findings underscore oncolytic Ads as promising, selective, and minimally toxic agents for MPNST therapy, warranting further exploration.

3.
Mol Ther ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627969

RESUMEN

Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.

4.
Int J Radiat Oncol Biol Phys ; 119(1): 42-55, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042450

RESUMEN

Radiation therapy (RT) has been a primary treatment modality in cancer for decades. Increasing evidence suggests that RT can induce an immunosuppressive shift via upregulation of cells such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). MDSCs inhibit antitumor immunity through potent immunosuppressive mechanisms and have the potential to be crucial tools for cancer prognosis and treatment. MDSCs interact with many different pathways, desensitizing tumor tissue and interacting with tumor cells to promote therapeutic resistance. Vascular damage induced by RT triggers an inflammatory signaling cascade and potentiates hypoxia in the tumor microenvironment (TME). RT can also drastically modify cytokine and chemokine signaling in the TME to promote the accumulation of MDSCs. RT activation of the cGAS-STING cytosolic DNA sensing pathway recruits MDSCs through a CCR2-mediated mechanism, inhibiting the production of type 1 interferons and hampering antitumor activity and immune surveillance in the TME. The upregulation of hypoxia-inducible factor-1 and vascular endothelial growth factor mobilizes MDSCs to the TME. After recruitment, MDSCs promote immunosuppression by releasing reactive oxygen species and upregulating nitric oxide production through inducible nitric oxide synthase expression to inhibit cytotoxic activity. Overexpression of arginase-1 on subsets of MDSCs degrades L-arginine and downregulates CD3ζ, inhibiting T-cell receptor reactivity. This review explains how radiation promotes tumor resistance through activation of immunosuppressive MDSCs in the TME and discusses current research targeting MDSCs, which could serve as a promising clinical treatment strategy in the future.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Células Supresoras de Origen Mieloide/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias/patología , Microambiente Tumoral , Inmunosupresores , Hipoxia/metabolismo
5.
Sci Adv ; 9(47): eadg8876, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38000020

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft tissue sarcomas with limited treatment options, and new effective therapeutic strategies are desperately needed. We observe antiproliferative potency of genetic depletion of PTPN11 or pharmacological inhibition using the SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy. In combination, TNO155 attenuates the adaptive response to CDK4/6i, potentiates its antiproliferative effects, and converges on enhancement of RB activity, with greater suppression of cell cycle and inhibitor-of-apoptosis proteins, leading to deeper and more durable antitumor activity in in vitro and in vivo patient-derived models of MPNST, relative to either single agent. Overall, our study provides timely evidence to support the clinical advancement of this combination strategy in patients with MPNST and other tumors driven by loss of NF1.


Asunto(s)
Neurofibrosarcoma , Humanos , Transducción de Señal , Ciclo Celular , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/genética
6.
BMC Res Notes ; 16(1): 275, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848948

RESUMEN

OBJECTIVE: In epidemiological and experimental research, high folic acid intake has been demonstrated to accelerate tumor development among populations with genetic and/or molecular susceptibility to cancer. Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder predisposing affected individuals to tumorigenesis, including benign plexiform neurofibromas; however, understanding of factors associated with tumor risk in NF1 patients is limited. Therefore, we investigated whether pregestational folic acid intake modified plexiform-like peripheral nerve sheath tumor risk in a transgenic NF1 murine model. RESULTS: We observed no significant differences in overall survival according to folate group. Relative to controls (180 days), median survival did not statistically differ in deficient (174 days, P = 0.56) or supplemented (177 days, P = 0.13) folate groups. Dietary folate intake was positively associated with RBC folate levels at weaning, (P = 0.023, 0.0096, and 0.0006 for deficient vs. control, control vs. supplemented, and deficient vs. supplemented groups, respectively). Dorsal root ganglia (DRG), brachial plexi, and sciatic nerves were assessed according to folate group. Mice in the folate deficient group had significantly more enlarged DRG relative to controls (P = 0.044), but no other groups statistically differed. No significant differences for brachial plexi or sciatic nerve enlargement were observed according to folate status.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibroma Plexiforme , Neurofibroma , Neurofibromatosis 1 , Humanos , Embarazo , Femenino , Animales , Ratones , Neurofibromatosis 1/genética , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/patología , Ácido Fólico , Neurofibroma/complicaciones , Neurofibroma/patología , Neurofibroma Plexiforme/complicaciones , Neurofibroma Plexiforme/genética , Neurofibroma Plexiforme/patología
7.
Mol Ther Nucleic Acids ; 33: 227-239, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37520682

RESUMEN

Neurofibromatosis type 1 (NF1) results from germline mutations in the tumor-suppressor gene NF1 and predisposes patients to developing nervous system tumors. Twenty percent of NF1 patients harbor nonsense mutations resulting in premature termination codons (PTCs). Nonsense suppression therapies can facilitate ribosomal readthrough of PTCs to restore full-length protein, but their potential in NF1 is underexplored. We developed a minipig model of NF1 carrying a PTC to test whether nonsense suppression could restore expression of the NF1-encoded protein neurofibromin in vitro and in vivo. Nonsense suppression did not reliably increase neurofibromin in primary NF1-/- Schwann cells isolated from minipig neurofibromas but could reduce phosphorylated ERK. Gentamicin in vivo produced a similar plasma pharmacokinetic profile to humans and was detectable in clinically relevant tissues, including cerebral cortex, sciatic nerve, optic nerve, and skin. In gentamicin-treated animals, increased neurofibromin expression was seen in the optic nerve. Nonsense-mediated decay (NMD) causes degradation of transcripts with PTCs, which could impede nonsense suppression therapies. Nonsense suppression in combination with NMD inhibition restored neurofibromin protein expression in primary NF1-/- Schwann cells isolated from minipig neurofibromas. Thus, the effectiveness of nonsense suppression therapies can be improved in NF1 by the concurrent use of NMD inhibitors.

8.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298259

RESUMEN

Although the APOBEC3 family of single-stranded DNA cytosine deaminases is well-known for its antiviral factors, these enzymes are rapidly gaining attention as prominent sources of mutation in cancer. APOBEC3's signature single-base substitutions, C-to-T and C-to-G in TCA and TCT motifs, are evident in over 70% of human malignancies and dominate the mutational landscape of numerous individual tumors. Recent murine studies have established cause-and-effect relationships, with both human APOBEC3A and APOBEC3B proving capable of promoting tumor formation in vivo. Here, we investigate the molecular mechanism of APOBEC3A-driven tumor development using the murine Fah liver complementation and regeneration system. First, we show that APOBEC3A alone is capable of driving tumor development (without Tp53 knockdown as utilized in prior studies). Second, we show that the catalytic glutamic acid residue of APOBEC3A (E72) is required for tumor formation. Third, we show that an APOBEC3A separation-of-function mutant with compromised DNA deamination activity and wildtype RNA-editing activity is defective in promoting tumor formation. Collectively, these results demonstrate that APOBEC3A is a "master driver" that fuels tumor formation through a DNA deamination-dependent mechanism.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Desaminación , Neoplasias Hepáticas/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/metabolismo , Antígenos de Histocompatibilidad Menor/genética
9.
Commun Biol ; 6(1): 582, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264057

RESUMEN

Comprehensive screenings to clarify indirect cell-cell interactions, such as those in the tumor microenvironment, especially comprehensive assessments of supporting cells' effects, are challenging. Therefore, in this study, indirect CRISPR screening for drug resistance with cell-cell interactions was invented. The photoconvertible fluorescent protein Dendra2 was inducted to supporting cells and explored the drug resistance responsible factors of supporting cells with CRISPR screenings. Random mutated supporting cells co-cultured with leukemic cells induced drug resistance with cell-cell interactions. Supporting cells responsible for drug resistance were isolated with green-to-red photoconversion, and 39 candidate genes were identified. Knocking out C9orf89, MAGI2, MLPH, or RHBDD2 in supporting cells reduced the ratio of apoptosis of cancer cells. In addition, the low expression of RHBDD2 in supporting cells, specifically fibroblasts, of clinical pancreatic cancer showed a shortened prognosis, and a negative correlation with CXCL12 was observed. Indirect CRISPR screening was established to isolate the responsible elements of cell-cell interactions. This screening method could reveal unknown mechanisms in all kinds of cell-cell interactions by revealing live phenotype-inducible cells, and it could be a platform for discovering new targets of drugs for conventional chemotherapies.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas , Comunicación Celular/genética , Resistencia a Medicamentos
10.
J Invest Dermatol ; 143(8): 1378-1387, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330719

RESUMEN

Neurofibromatosis type 1 (NF1) is caused by a nonfunctional copy of the NF1 tumor suppressor gene that predisposes patients to the development of cutaneous neurofibromas (cNFs), the skin tumor that is the hallmark of this condition. Innumerable benign cNFs, each appearing by an independent somatic inactivation of the remaining functional NF1 allele, form in nearly all patients with NF1. One of the limitations in developing a treatment for cNFs is an incomplete understanding of the underlying pathophysiology and limitations in experimental modeling. Recent advances in preclinical in vitro and in vivo modeling have substantially enhanced our understanding of cNF biology and created unprecedented opportunities for therapeutic discovery. We discuss the current state of cNF preclinical in vitro and in vivo model systems, including two- and three-dimensional cell cultures, organoids, genetically engineered mice, patient-derived xenografts, and porcine models. We highlight the models' relationship to human cNFs and how they can be used to gain insight into cNF development and therapeutic discovery.


Asunto(s)
Neurofibroma , Neurofibromatosis 1 , Neoplasias Cutáneas , Ratones , Humanos , Animales , Porcinos , Neurofibromatosis 1/genética , Neurofibromatosis 1/terapia , Mutación , Neurofibroma/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Alelos
11.
Nat Commun ; 14(1): 2696, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37164978

RESUMEN

Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive sarcoma, and a lethal neurofibromatosis type 1-related malignancy, with little progress made on treatment strategies. Here, we apply a multiplatform integrated molecular analysis on 108 tumors spanning the spectrum of peripheral nerve sheath tumors to identify candidate drivers of MPNST that can serve as therapeutic targets. Unsupervised analyses of methylome and transcriptome profiles identify two distinct subgroups of MPNSTs with unique targetable oncogenic programs. We establish two subgroups of MPNSTs: SHH pathway activation in MPNST-G1 and WNT/ß-catenin/CCND1 pathway activation in MPNST-G2. Single nuclei RNA sequencing characterizes the complex cellular architecture and demonstrate that malignant cells from MPNST-G1 and MPNST-G2 have neural crest-like and Schwann cell precursor-like cell characteristics, respectively. Further, in pre-clinical models of MPNST we confirm that inhibiting SHH pathway in MPNST-G1 prevent growth and malignant progression, providing the rational for investigating these treatments in clinical trials.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibromatosis 1 , Neurofibrosarcoma , Humanos , Neurofibrosarcoma/genética , Neurofibrosarcoma/metabolismo , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/metabolismo , Neoplasias de la Vaina del Nervio/patología , Neurofibromatosis 1/genética , Células de Schwann/metabolismo , Vía de Señalización Wnt/genética
12.
Neuro Oncol ; 25(11): 2044-2057, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37246765

RESUMEN

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas that often develop in patients with neurofibromatosis type 1 (NF1). To address the critical need for novel therapeutics in MPNST, we aimed to establish an ex vivo 3D platform that accurately captured the genomic diversity of MPNST and could be utilized in a medium-throughput manner for drug screening studies to be validated in vivo using patient-derived xenografts (PDX). METHODS: Genomic analysis was performed on all PDX-tumor pairs. Selected PDX were harvested for assembly into 3D microtissues. Based on prior work in our labs, we evaluated drugs (trabectedin, olaparib, and mirdametinib) ex vivo and in vivo. For 3D microtissue studies, cell viability was the endpoint as assessed by Zeiss Axio Observer. For PDX drug studies, tumor volume was measured twice weekly. Bulk RNA sequencing was performed to identify pathways enriched in cells. RESULTS: We developed 13 NF1-associated MPNST-PDX and identified mutations or structural abnormalities in NF1 (100%), SUZ12 (85%), EED (15%), TP53 (15%), CDKN2A (85%), and chromosome 8 gain (77%). We successfully assembled PDX into 3D microtissues, categorized as robust (>90% viability at 48 h), good (>50%), or unusable (<50%). We evaluated drug response to "robust" or "good" microtissues, namely MN-2, JH-2-002, JH-2-079-c, and WU-225. Drug response ex vivo predicted drug response in vivo, and enhanced drug effects were observed in select models. CONCLUSIONS: These data support the successful establishment of a novel 3D platform for drug discovery and MPNST biology exploration in a system representative of the human condition.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibromatosis 1 , Neurofibrosarcoma , Humanos , Neurofibrosarcoma/patología , Medicina de Precisión , Neurofibromatosis 1/patología , Neoplasias de la Vaina del Nervio/patología , Mutación
13.
Front Oncol ; 13: 1113121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035203

RESUMEN

Background: Medulloblastoma, the most common malignant pediatric brain tumor, displays marked sex differences in prevalence of the four main molecular subgroups: SHH, WNT, Group 3 and Group 4. Males are more frequently diagnosed with SHH, Group 3 and 4 tumors, which have worse prognoses than WNT tumors. Little is known about sex differences in methylation profiles within subgroups. Methods: Using publicly available methylation data (Illumina HumanMethylation450K array), we compared beta values for males versus females. Differentially methylated positions (DMP) by sex within medulloblastoma subgroups were identified on the autosomes. DMPs were mapped to genes and Reactome pathway analysis was run by subgroup. Kaplan-Meier survival curves (Log-Rank p-values) were assessed for each sex within subgroup. MethylCIBERSORT was used to investigate the tumor microenvironment using deconvolution to estimate the abundances of immune cell types using DNA methylation data. Results: There were statistically significant differences in sex by medulloblastoma subgroups (chi-squared p-value=0.00004): Group 3 (n=144; 65% male), Group 4 (n=326; 67% male), SHH (n=223; 57% male) and WNT (n=70; 41% male). Females had worse survival than males for SHH (p-value=0.02). DMPs by sex were identified within subgroups: SHH (n=131), Group 4 (n=29), Group 3 (n=19), and WNT (n=16) and validated in an independent dataset. Unsupervised hierarchical clustering showed that sex-DMPs in SHH did not correlate with other tumor attributes. Ten genes with sex DMPs (RFTN1, C1orf103, FKBP1B, COL25A1, NPDC1, B3GNT1, FOXN3, RNASEH2C, TLE1, and PHF17) were shared across subgroups. Significant pathways (p<0.05) associated with DMPs were identified for SHH (n=22) and Group 4 (n=4) and included signaling pathways for RET proto-oncogene, advanced glycosylation end product receptor, regulation of KIT, neurotrophic receptors, NOTCH, and TGF-ß. In SHH, we identified DMPs in four genes (CDK6, COL25A1, MMP16, PRIM2) that encode proteins which are the target of therapies in clinical trials for other cancers. There were few sex differences in immune cell composition within tumor subgroups. Conclusion: There are sexually dimorphic methylation profiles for SHH medulloblastoma where survival differences were observed. Sex-specific therapies in medulloblastoma may impact outcomes.

14.
Nat Commun ; 14(1): 2468, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117218

RESUMEN

Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.


Asunto(s)
Fenómenos Mecánicos , Proteínas , Sondas de ADN , Fenómenos Fisiológicos Celulares , ADN
15.
Genes Chromosomes Cancer ; 62(9): 493-500, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36959711

RESUMEN

The advancement of CRISPR mediated gene engineering provides an opportunity to improve upon preclinical human cell line models of cancer predisposing syndromes. This review focuses on using CRISPR/Cas9 genome editing tools to model various human cancer predisposition syndromes. We examine the genetic mutations associated with neurofibromatosis type 1, Li-Fraumeni syndrome, Gorlin syndrome, BRCA mutant breast and ovarian cancers, and APC mutant cancers. Furthermore, we discuss the possibilities of using next-generation CRISPR-derived precision gene editing tools to introduce a variety of genetic lesions into human cell lines. The goal is to improve the quality of preclinical models surrounding these cancer predisposition syndromes through dissecting the effects of these mutations on the development of cancer and to provide new insights into the underlying mechanisms of these cancer predisposition syndromes. These studies demonstrate the continued utility and improvement of CRISPR/Cas9-induced human cell line models in studying the genetic basis of cancer.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Síndrome , Edición Génica , Susceptibilidad a Enfermedades , Línea Celular , Neoplasias/genética
16.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778419

RESUMEN

Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft tissue sarcomas with limited treatment options, and novel effective therapeutic strategies are desperately needed. We observe anti-proliferative efficacy of genetic depletion or pharmacological inhibition using the clinically available SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy. In combination, TNO155 attenuates the adaptive response to CDK4/6i, potentiates its anti-proliferative effects, and converges on enhancement of RB activity, with greater suppression of cell cycle and inhibitor-of-apoptosis proteins, leading to deeper and more durable anti-tumor activity in in vitro and in vivo patient-derived models of MPNST, relative to either single agent. Overall, our study provides timely evidence to support the clinical advancement of this combination strategy in patients with MPNST and other tumors driven by loss of NF1.

17.
Biology (Basel) ; 11(11)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36358254

RESUMEN

Mutations in NRAS constitutively activate cell proliferation signaling in malignant neoplasms, such as leukemia and melanoma, and the clarification of comprehensive downstream genes of NRAS might lead to the control of cell-proliferative signals of NRAS-driven cancers. We previously established that NRAS expression and proliferative activity can be controlled with doxycycline and named as THP-1 B11. Using a CRISPR activation library on THP-1 B11 cells with the NRAS-off state, survival clones were harvested, and 21 candidate genes were identified. By inducting each candidate guide RNA with the CRISPR activation system, DOHH, HIST1H2AC, KRT32, and TAF6 showed higher cell-proliferative activity. The expression of DOHH, HIST1H2AC, and TAF6 was definitely upregulated with NRAS expression. Furthermore, MEK inhibitors resulted in the decreased expression of DOHH, HIST1H2AC, and TAF6 proteins in parental THP-1 cells. The knockdown of DOHH, HIST1H2AC, and TAF6 was found to reduce proliferation in THP-1 cells, indicating that they are involved in the downstream proliferation of NRAS. These molecules are expected to be new therapeutic targets for NRAS-mutant leukemia cells.

18.
CRISPR J ; 5(4): 517-535, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35972367

RESUMEN

Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias , Sistemas CRISPR-Cas/genética , Edición Génica , Humanos , Neoplasias/genética , Neoplasias/terapia
19.
Mol Cancer Res ; 20(11): 1646-1658, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-35900472

RESUMEN

NRAS proteins are central regulators of proliferation, survival, and self-renewal in leukemia. Previous work demonstrated that the effects of oncogenic NRAS in mediating proliferation and self-renewal are mutually exclusive within leukemia subpopulations and that levels of oncogenic NRAS vary between highly proliferative and self-renewing leukemia subpopulations. These findings suggest that NRAS activity levels may be important determinants of leukemic behavior. To define how oncogenic NRAS levels affect these functions, we genetically engineered an acute myeloid leukemia (AML) cell line, THP-1, to express variable levels of NRASG12V. We replaced the endogenous NRASG12D gene with a tetracycline-inducible and dose-responsive NRASG12V transgene. Cells lacking NRASG12V oncoprotein were cell-cycle arrested. Intermediate levels of NRASG12V induced maximal proliferation; higher levels led to attenuated proliferation, increased G1 arrest, senescence markers, and maximal self-renewal capacity. Higher levels of the oncoprotein also induced self-renewal and mitochondrial genes. We used mass cytometry (CyTOF) to define the downstream signaling events that mediate these differential effects. Not surprisingly, we found that the levels of such canonical RAS-effectors as pERK and p4EBP1 correlated with NRASG12V levels. ß-Catenin, a mediator of self-renewal, also correlated with NRASG12V levels. These signaling intermediates may mediate the differential effects of NRASG12V in leukemia biology. Together, these data reveal that oncogenic NRAS levels are important determinants of leukemic behavior explaining heterogeneity in phenotypes within a clone. This system provides a new model to study RAS oncogene addiction and RAS-induced self-renewal in AML. IMPLICATIONS: Different levels of activated NRAS may exert distinct effects on proliferation and self-renewal.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Oncogenes , Proteínas Oncogénicas/genética , Proliferación Celular , Línea Celular
20.
ACS Nano ; 16(8): 12185-12201, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35876221

RESUMEN

Few therapeutic options have been made available for treating central nervous system tumors, especially upon recurrence. Recurrent medulloblastoma is uniformly lethal with no approved therapies. Recent preclinical studies have shown promising results for eradicating various solid tumors by targeting the overexpressed immune checkpoint molecule, B7-H3. However, due to several therapy-related toxicities and reports of tumor escape, the full potential of targeting this pan-cancer antigen has yet to be realized. Here, we designed and characterized bispecific chemically self-assembling nanorings (CSANs) that target the T cell receptor, CD3ε, and tumor associated antigen, B7-H3, derived from the humanized 8H9 single chain variable fragment. We show that the αB7-H3-αCD3 CSANs increase T cell infiltration and facilitate selective cytotoxicity of B7-H3+ medulloblastoma spheroids and that activity is independent of target cell MHC class I expression. Importantly, nonspecific T cell activation against the ONS 2303 medulloblastoma cell line can be reduced by tuning the valency of the αCD3 targeted monomer in the oligomerized CSAN. Intraperitoneal injections of αB7-H3-αCD3 bispecific CSANs were found to effectively cross the blood-tumor barrier into the brain and elicit significant antitumor T cell activity intracranially as well as systemically in an orthotopic medulloblastoma model. Moreover, following treatment with αB7-H3-αCD3 CSANs, intratumoral T cells were found to primarily have a central memory phenotype that displayed significant levels of characteristic activation markers. Collectively, these results demonstrate the ability of our multivalent, bispecific CSANs to direct potent antitumor T cell responses and indicate its potential utility as an alternative or complementary therapy for immune cell targeting of B7-H3+ brain tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Linfocitos T , Meduloblastoma/tratamiento farmacológico , Activación de Linfocitos , Antígenos de Neoplasias , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...