Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Planta ; 238(2): 381-95, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716184

RESUMEN

Germination is controlled by external factors, such as temperature, water, light and by hormone balance. Recently, reactive oxygen species (ROS) have been shown to act as messengers during plant development, stress responses and programmed cell death. We analyzed the role of ROS during germination and demonstrated that ROS in addition to their role as cell wall loosening factor are essential signalling molecules in this process. Indeed, we showed that ROS are released prior to endosperm rupture, that their production is required for germination, and that class III peroxidases, as ROS level regulators, colocalized with ROS production. Among ROS, H2O2 modifies, during germination early steps, the expression of genes encoding for enzymes regulating ROS levels. This pointing out a regulatory feedback loop for ROS production. Measurements of endogenous levels of ROS following application of GA and ABA suggested that ABA inhibits germination by repressing ROS accumulation, and that, conversely, GA triggers germination by promoting an increase of ROS levels. We followed the early visible steps of germination (testa and endosperm rupture) in Arabidopsis seeds treated by specific ROS scavengers and as the light quality perception is necessary for a regular germination, we examined the germination in presence of exogenous H2O2 in different light qualities. H2O2 either promoted germination or repressed germination depending on the light wavelengths, showing that H2O2 acts as a signal molecule regulating germination in a light-dependent manner. Using photoreceptors null-mutants and GA-deficient mutants, we showed that H2O2-dependent promotion of germination relies on phytochrome signalling, but not on cryptochrome signalling, and that ROS signalling requires GA signalling.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Semillas/fisiología , Transducción de Señal , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endospermo/efectos de los fármacos , Endospermo/genética , Endospermo/fisiología , Endospermo/efectos de la radiación , Germinación , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Luz , Modelos Biológicos , Mutación , Especificidad de Órganos , Peroxidasas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Especies Reactivas de Oxígeno/análisis , Semillas/efectos de los fármacos , Semillas/genética , Semillas/efectos de la radiación
2.
Plant Physiol ; 152(3): 1391-405, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20071603

RESUMEN

In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fototropinas/metabolismo , Hojas de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Tamaño de la Célula , Cloroplastos/fisiología , Homeostasis , Ácidos Indolacéticos/metabolismo , Luz , Mutación , Estomas de Plantas/fisiología
3.
Proc Natl Acad Sci U S A ; 103(26): 10134-9, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16777956

RESUMEN

Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Fototropismo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Membrana Celular/química , Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Fosfoproteínas/análisis , Fosfoproteínas/genética , Fitocromo A/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
J Mol Evol ; 61(4): 559-69, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16170454

RESUMEN

Plants possess photoreceptors to perceive light which controls most aspects of their lives. Three photoreceptor families are well characterized: cryptochromes (crys), phototropins (phots), and phytochromes (phys). Two putative families have been identified more recently: Zeitlupes (ZTLs) and UV-B photoreceptors (ULI). Using Arabidopsis thaliana and Oryza sativa photoreceptor sequences as references, we have searched for photoreceptor encoding genes in the major phyla of plant kingdom. For each photoreceptor family, using a phylogenetic tree based on the alignment of conserved amino acid sequences, we have tried to trace back the evolution and the emergence of the diverse photoreceptor ancestral sequences. The green alga Chlamydomonas contains one cry and one phot sequence, probably close to the corresponding ancestral sequences, and no phy-related sequence. The putative UV-B photoreceptors seem to be restricted to the Brassicacae. Except for mosses and ferns, which contain divergent photoreceptor numbers, the composition of the diverse photoreceptor families is conserved between species. A high conservation of the residues within domains is observed in each photoreceptor family. The complete phylogenic analysis of the photoreceptor families in plants has confirmed the existence of crucial evolutionary nodes between the major phyla. For each photoreceptor class, a major duplication occurred before the separation between Mono- and Eudicotyledons. This allowed postulating on the putative ancestral function of the photoreceptors.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos , Flavoproteínas/química , Flavoproteínas/genética , Genes de Plantas/genética , Funciones de Verosimilitud , Datos de Secuencia Molecular , Fitocromo/química , Fitocromo/genética , Alineación de Secuencia
5.
Plant J ; 40(5): 826-34, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15546364

RESUMEN

How developing seedlings integrate gravitropic and phototropic stimuli to determine their direction of growth is poorly understood. In this study we tested whether blue light influences hypocotyl gravitropism in Arabidopsis. Phototropin1 (phot1) triggers phototropism under low fluence rates of blue light but, at least in the dark, has no effect on gravitropism. By analyzing the growth orientation of phototropism-deficient seedlings in response to gravitropic and phototropic stimulations we show that blue light not only triggers phototropism but also represses hypocotyl gravitropism. At low fluence rates of blue light phot1 mutants were agravitropic. In contrast, phyAphot1 double mutants grew exclusively according to gravity demonstrating that phytochrome A (phyA) is necessary to inhibit gravitropism. Analyses of phot1cry1cry2 triple mutants indicate that cryptochromes play a minor role in this response. Thus the optimal growth orientation of hypocotyls is determined by the action of phyA-suppressing gravitropism and the phototropin-triggering phototropism. It has long been known that phytochromes promote phototropism but the mechanism involved is still unknown. Our data show that by inhibiting gravitropism phyA acts as a positive regulator of phototropism.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flavoproteínas/fisiología , Gravitropismo/fisiología , Luz , Fototropismo/fisiología , Fitocromo/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Criptocromos , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Mutación , Fosfoproteínas/genética , Fosfoproteínas/fisiología , Fitocromo A , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas
6.
Plant Cell ; 15(12): 2966-78, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14615593

RESUMEN

Phytochrome kinase substrate1 (PKS1) is a cytoplasmic protein that interacts physically with, and is phosphorylated by, the plant photoreceptor phytochrome. Here, we show that light transiently increases PKS1 mRNA levels and concentrates its expression to the elongation zone of the hypocotyl and root. This response is mediated by phytochrome A (phyA) acting in the very low fluence response (VLFR) mode. In the hypocotyl, PKS1 RNA and protein accumulation are maintained only under prolonged incubation in far-red light, the wavelength that most effectively activates phyA. Null mutants of PKS1 and its closest homolog, PKS2, show enhanced phyA-mediated VLFR. Notably, a pks1 pks2 double mutant has no phenotype, whereas overexpression of either PKS1 or PKS2 results in the same phenotype as the pks1 or pks2 single null mutant. We propose that PKS1 and PKS2 are involved in a growth regulatory loop that provides homeostasis to phyA signaling in the VLFR. In accordance with this idea, PKS1 effects are larger in the pks2 background (and vice versa). Moreover, the two proteins can interact with each other, and PKS2 negatively regulates PKS1 protein levels specifically under VLFR conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular , Fitocromo/metabolismo , Proteínas de Plantas , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Glucuronidasa/genética , Glucuronidasa/metabolismo , Homeostasis/efectos de la radiación , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Luz , Proteínas de la Membrana , Mutación , Fenotipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fitocromo A , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de la radiación , Mapeo de Interacción de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA