Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(4): 109405, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510140

RESUMEN

Heterozygous mutations in COL10A1 lead to metaphyseal chondrodysplasia type Schmid (MCDS), a skeletal disorder characterized by epiphyseal abnormalities. Prior analysis revealed impaired trimerization and intracellular retention of mutant collagen type X alpha 1 chains as cause for elevated endoplasmic reticulum (ER) stress. However, how ER stress translates into structural defects remained unclear. We generated a medaka (Oryzias latipes) MCDS model harboring a 5 base pair deletion in col10a1, which led to a frameshift and disruption of 11 amino acids in the conserved trimerization domain. col10a1Δ633a heterozygotes recapitulated key features of MCDS and revealed early cell polarity defects as cause for dysregulated matrix secretion and deformed skeletal structures. Carbamazepine, an ER stress-reducing drug, rescued this polarity impairment and alleviated skeletal defects in col10a1Δ633a heterozygotes. Our data imply cell polarity dysregulation as a potential contributor to MCDS and suggest the col10a1Δ633a medaka mutant as an attractive MCDS animal model for drug screening.

2.
Biomolecules ; 13(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136650

RESUMEN

DAF-FM DA is widely used as a live staining compound to show the presence of nitric oxide (NO) in cells. Applying this stain to live zebrafish embryos is known to indicate early centers of bone formation, but the precise (cellular) location of the signal has hitherto not been revealed. Using sections of zebrafish embryos live-stained with DAF-FM DA, we could confirm that the fluorescent signals were predominantly located in areas of ongoing bone formation. Signals were observed in the bone and tooth matrix, in the notochord sheath, as well as in the bulbus arteriosus. Surprisingly, however, they were exclusively extracellular, even after very short staining times. Von Kossa and Alizarin red S staining to reveal mineral deposits showed that DAF-FM DA stains both the mineralized and non-mineralized bone matrix (osteoid), excluding that DAF-FM DA binds non-specifically to calcified structures. The importance of NO in bone formation by osteoblasts is nevertheless undisputed, as shown by the absence of bone structures after the inhibition of NOS enzymes that catalyze the formation of NO. In conclusion, in zebrafish skeletal biology, DAF-FM DA is appropriate to reveal bone formation in vivo, independent of mineralization of the bone matrix, but it does not demonstrate intracellular NO.


Asunto(s)
Osteogénesis , Pez Cebra , Animales , Pez Cebra/metabolismo , Óxido Nítrico/metabolismo , Huesos/metabolismo , Colorantes/metabolismo , Coloración y Etiquetado
3.
Front Endocrinol (Lausanne) ; 13: 851879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282456

RESUMEN

Osteogenesis imperfecta (OI) is a group of heritable disorders affecting bone and other connective tissues. Dominant OI forms are mainly caused by mutations in collagen type I. Patients suffer from skeletal deformities, fractures of long bones and vertebral compression fractures from early childhood onward. Altered collagen structure and excess mineralisation are the main causes for the bone phenotype. The Chihuahua (Chi/+) zebrafish has become an important model for OI. Given that reduced dietary phosphorus (P) intake reduces the bone mineral content and promotes bone matrix formation in teleosts, including zebrafish, we tested whether a low dietary P (LP) intake mitigates the OI phenotype in the Chi/+ model. To answer this question, we characterised the Chi/+ vertebral column phenotype at a morphological, cellular and subcellular level. We present the first description of vertebral compression fractures in Chi/+ and assess the effects of LP diet on the Chi/+ phenotype (Chi/+LP). Compared to untreated Chi/+, two months of LP dietary treatment decreases vertebral deformities in the abdominal region and reduces shape variation of caudal vertebral bodies to a condition more similar to wild type (WT). At the histological level, the osteoid layer, covering the bone at the vertebral body endplates in WT zebrafish, is absent in Chi/+, but it is partially restored with the LP diet. Whole mount-stained specimens and histological sections show various stages of vertebral compression fractures in Chi/+ and Chi/+LP animals. Both Chi/+ and Chi/+LP show abundant osteoclast activity compared to WT. Finally, the ultrastructure analysis of WT, Chi/+ and Chi/+LP shows Chi/+ and Chi/+LP osteoblasts with enlarged endoplasmic reticulum cisternae and a high protein content, consistent with intracellular retention of mutated collagen. Nevertheless, the secreted collagen in Chi/+LP appears better organised concerning fibre periodicity compared to Chi/+. Our findings suggest that a reduced mineral content of Chi/+ bone could explain the lower frequency of vertebral column deformities and the restored shape of the vertebral bodies in Chi/+LP animals. This, together with the improved quality of the bone extracellular matrix, suggests that two months of reduced dietary P intake can alleviate the severe bone phenotype in Chi/+ zebrafish.


Asunto(s)
Fracturas por Compresión , Anomalías Musculoesqueléticas , Osteogénesis Imperfecta , Fracturas de la Columna Vertebral , Animales , Colágeno , Dieta , Modelos Animales de Enfermedad , Humanos , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Fenotipo , Fósforo , Pez Cebra
4.
Dev Dyn ; 250(7): 1021-1035, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33452709

RESUMEN

BACKGROUND: Organs that develop early in life, and are replaced by a larger version as the animal grows, often represent a miniature version of the adult organ. Teeth constituting the first functional dentition in small-sized teleost fish, such as medaka (Oryzias latipes), are examples of such miniature organs. With a dentin cone as small as the size of one human cell, or even smaller, these teeth raise the question how many dentin-producing cells (odontoblasts) are required to build such a tooth, and whether this number can be as little as one. RESULTS: Based on detailed observations with transmission electron microscopy (TEM) and TEM-based 3D-reconstructions, we show that only one mesenchymal cell qualifies as a true odontoblast. A second mesenchymal cell potentially participates in dentin formation, but only at a late stage of tooth development. Moreover, the fate of these cells appears to be specified very early during tooth development. CONCLUSIONS: Our observations indicate that in this system, one single odontoblast fulfills roles normally exerted by a large and communicating cell population. First-generation teeth in medaka thus provide an exciting model to study integration of multiple functions into a single cell.


Asunto(s)
Células Madre Mesenquimatosas/citología , Odontogénesis/fisiología , Diente/embriología , Animales , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Simulación por Computador , Embrión no Mamífero , Imagenología Tridimensional , Células Madre Mesenquimatosas/fisiología , Células Madre Mesenquimatosas/ultraestructura , Miniaturización , Morfogénesis/fisiología , Odontoblastos/citología , Odontoblastos/fisiología , Odontoblastos/ultraestructura , Oryzias/embriología , Diente/crecimiento & desarrollo , Diente/ultraestructura , Erupción Dental/fisiología
5.
Proc Natl Acad Sci U S A ; 117(21): 11503-11512, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398375

RESUMEN

To explain the evolutionary origin of vertebrate teeth from odontodes, it has been proposed that competent epithelium spread into the oropharyngeal cavity via the mouth and other possible channels such as the gill slits [Huysseune et al., 2009, J. Anat. 214, 465-476]. Whether tooth formation deep inside the pharynx in extant vertebrates continues to require external epithelia has not been addressed so far. Using zebrafish we have previously demonstrated that cells derived from the periderm penetrate the oropharyngeal cavity via the mouth and via the endodermal pouches and connect to periderm-like cells that subsequently cover the entire endoderm-derived pharyngeal epithelium [Rosa et al., 2019, Sci. Rep. 9, 10082]. We now provide conclusive evidence that the epithelial component of pharyngeal teeth in zebrafish (the enamel organ) is derived from medial endoderm, as hitherto assumed based on position deep in the pharynx. Yet, dental morphogenesis starts only after the corresponding endodermal pouch (pouch 6) has made contact with the skin ectoderm, and only after periderm-like cells have covered the prospective tooth-forming endodermal epithelium. Manipulation of signaling pathways shown to adversely affect tooth development indicates they act downstream of these events. We demonstrate that pouch-ectoderm contact and the presence of a periderm-like layer are both required, but not sufficient, for tooth initiation in the pharynx. We conclude that the earliest interactions to generate pharyngeal teeth encompass those between different epithelial populations (skin ectoderm, endoderm, and periderm-like cells in zebrafish), in addition to the epithelial-mesenchymal interactions that govern the formation of all vertebrate teeth.


Asunto(s)
Epitelio/fisiología , Estratos Germinativos , Odontogénesis/fisiología , Faringe/fisiología , Diente/crecimiento & desarrollo , Animales , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/citología , Estratos Germinativos/fisiología , Transducción de Señal/fisiología , Pez Cebra
6.
Sci Rep ; 9(1): 10082, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300674

RESUMEN

The gnathostome pharyngeal cavity functions in food transport and respiration. In amniotes the mouth and nares are the only channels allowing direct contact between internal and external epithelia. In teleost fish, gill slits arise through opening of endodermal pouches and connect the pharynx to the exterior. Using transgenic zebrafish lines, cell tracing, live imaging and different markers, we investigated if pharyngeal openings enable epithelial invasion and how this modifies the pharyngeal epithelium. We conclude that in zebrafish the pharyngeal endoderm becomes overlain by cells with a peridermal phenotype. In a wave starting from pouch 2, peridermal cells from the outer skin layer invade the successive pouches until halfway their depth. Here the peridermal cells connect to a population of cells inside the pharyngeal cavity that express periderm markers, yet do not invade from outside. The latter population expands along the midline from anterior to posterior until the esophagus-gut boundary. Together, our results show a novel role for the periderm as an internal epithelium becomes adapted to function as an external surface.


Asunto(s)
Branquias/anatomía & histología , Faringe/anatomía & histología , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Endodermo/embriología , Branquias/embriología , Faringe/embriología
7.
Development ; 144(2): 265-271, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993982

RESUMEN

osterix (osx; sp7) encodes a zinc-finger transcription factor that controls osteoblast differentiation in mammals. Although identified in all vertebrate lineages, its role in non-mammalian bone formation remains elusive. Here, we show that an osx mutation in medaka results in severe bone defects and larval lethality. Pre-osteoblasts fail to differentiate leading to severe intramembranous and perichondral ossification defects. The notochord sheath mineralizes normally, supporting the idea of an osteoblast-independent mechanism for teleost vertebral centra formation. This study establishes a key role for Osx for bone formation in a non-mammalian species, and reveals conserved and non-conserved features in vertebrate bone formation.


Asunto(s)
Oryzias/embriología , Oryzias/genética , Osteogénesis/genética , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Calcificación Fisiológica/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Notocorda/embriología , Filogenia , Factor de Transcripción Sp7 , Especificidad de la Especie , Factores de Transcripción/genética , Vertebrados/embriología , Vertebrados/genética , Proteínas de Pez Cebra/fisiología
8.
J Bone Miner Res ; 31(11): 1930-1942, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27541483

RESUMEN

Bruck syndrome (BS) is a disorder characterized by joint flexion contractures and skeletal dysplasia that shows strong clinical overlap with the brittle bone disease osteogenesis imperfecta (OI). BS is caused by biallelic mutations in either the FKBP10 or the PLOD2 gene. PLOD2 encodes the lysyl hydroxylase 2 (LH2) enzyme, which is responsible for the hydroxylation of lysine residues in fibrillar collagen telopeptides. This hydroxylation directs crosslinking of collagen fibrils in the extracellular matrix, which is necessary to provide stability and tensile integrity to the collagen fibrils. To further elucidate the function of LH2 in vertebrate skeletal development, we created a zebrafish model harboring a homozygous plod2 nonsense mutation resulting in reduced telopeptide hydroxylation and crosslinking of bone type I collagen. Adult plod2 mutants present with a shortened body axis and severe skeletal abnormalities with evidence of bone fragility and fractures. The vertebral column of plod2 mutants is short and scoliotic with compressed vertebrae that show excessive bone formation at the vertebral end plates, and increased tissue mineral density in the vertebral centra. The muscle fibers of mutant zebrafish have a reduced diameter near the horizontal myoseptum. The endomysium, a layer of connective tissue ensheathing the individual muscle fibers, is enlarged. Transmission electron microscopy of mutant vertebral bone shows type I collagen fibrils that are less organized with loss of the typical plywood-like structure. In conclusion, plod2 mutant zebrafish show molecular and tissue abnormalities in the musculoskeletal system that are concordant with clinical findings in BS patients. Therefore, the plod2 zebrafish mutant is a promising model for the elucidation of the underlying pathogenetic mechanisms leading to BS and the development of novel therapeutic avenues in this syndrome. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Artrogriposis/patología , Colágeno Tipo I/metabolismo , Lisina/metabolismo , Anomalías Musculoesqueléticas/patología , Osteogénesis Imperfecta/patología , Péptidos/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Artrogriposis/complicaciones , Artrogriposis/diagnóstico por imagen , Artrogriposis/metabolismo , Huesos/anomalías , Huesos/diagnóstico por imagen , Huesos/patología , Calcificación Fisiológica , Dominio Catalítico , Codón sin Sentido/genética , Secuencia Conservada/genética , Reactivos de Enlaces Cruzados/metabolismo , Evolución Molecular , Hidroxilación , Larva/metabolismo , Espectrometría de Masas , Anomalías Musculoesqueléticas/complicaciones , Anomalías Musculoesqueléticas/diagnóstico por imagen , Anomalías Musculoesqueléticas/metabolismo , Notocorda/patología , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/metabolismo , Fenotipo , Microtomografía por Rayos X , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...