Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(18): 12063-12071, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34056360

RESUMEN

The aim of this study is to design and develop an efficient leaching process based on a fundamental and theoretical thermodynamic analysis and the optimization of the operation parameters via the response surface methodology (RSM). Using this methodology, the design of a leaching process for the recovery of copper, silver, and lead from highly metal-concentrated fractions of e-waste is presented. Thermodynamic predictions were performed through the construction and analysis of Pourbaix diagrams for the specific conditions of the leaching system. From this analysis, it was possible to determine the values of potential (E vs NHE) and pH at which the leaching reactions occur spontaneously. Additionally, RSM was useful to deduce a quadratic semiempirical model that predicts the copper leaching efficiencies as a function of two parameters involved in the leaching procedure, the stirring speed and the solid/liquid ratio, by which the response variable, the leaching efficiency, can be optimized.

2.
ACS Omega ; 5(28): 17347-17355, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32715219

RESUMEN

The interactions of proteins and other molecules and their adsorption onto substrates is a fascinating topic that has been applied to surface technologies, biosensors, corrosion studies, biotechnologies, and other fields. The success of these applications requires a previous characterization using some analytical techniques that, ordinarily, are not electrochemical. This work proposes analyzing the variation of the double-layer capacitance obtained through impedance electrochemical spectroscopy as an alternative strategy to show evidence of the interactions between proteins and triblock copolymers. The proposal is supported through the study of the interaction and adsorption of bovine serum albumin (BSA) and a commercial triblock copolymer (P103) in phosphate buffer on a gold electrode. The double-layer capacitance and the apparent interface thickness vs polarization potential curves as well as the potential of zero charge for pure P103 (0.6 wt %, corresponding to 6 g L-1), pure BSA (3 mg mL-1), and P103-BSA solutions (0.6 wt % and 3 mg mL-1, respectively) are sensitive enough to show not only the interaction and the adsorption of the species but also the polarization potential where these interactions are taking place. A qualitative and quantitative analysis concerning the double-layer capacitance behavior is given. The significance and impact of this work is also presented.

3.
ACS Omega ; 5(21): 12355-12363, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32548419

RESUMEN

A strategy for the efficient recovery of highly pure copper and antimony metals from electronic waste (e-waste) was implemented by the combination of hydrometallurgical and electrochemical processes. The focus is on copper recovery as the main component in the leached solution, whereas the antimony recovery process was established as a purification step in order to achieve a highly pure copper deposit. The strategy includes mechanical methods to reduce the size of the wasted printed circuit boards to enhance the efficiency of antimony and copper lixiviation via ferric chloride in acidic media (0.5 M HCl) followed by an electrowinning process. In order to establish the best parameters for copper electrowinning, the leached solution was characterized by cyclic voltammetry and cathodic polarization. Then, an electrochemical reactor with a rotating cylinder electrode was used to evaluate the copper concentration decay, the cathodic current efficiency, the specific energy consumption, and mass-transfer coefficient. Furthermore, antimony was recovered via precipitation by a pH modification in accordance with the Pourbaix diagram. Under this methodology, two valuable products from the e-waste were recovered: a 96 wt % pure copper deposit and 81 wt % pure antimony precipitate. The strategy for recovery of other metal ions, such as lead, present in the e-waste at high concentrations will be reported in further works.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA