Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Methods ; 18(11): 1386-1394, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675434

RESUMEN

Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (roughly 3.2 MDa), ribulose 1,5-bisphosphate carboxylase-oxygenase (roughly 560 kDa soluble complex) and photosystem II (roughly 550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semiautomated analysis of a wide range of molecular targets in cellular tomograms.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón/métodos , Aprendizaje Profundo , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancias Macromoleculares/química , Redes Neurales de la Computación , Chlamydomonas reinhardtii/metabolismo , Complejo de Proteína del Fotosistema II/química , Ribosomas/química , Ribulosa-Bifosfato Carboxilasa/química
4.
Methods Mol Biol ; 1624: 193-210, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28842885

RESUMEN

The structural modeling of a macromolecular machine is like a "Lego" approach that is challenged when blocks, like proteins imported from the Protein Data Bank, are to be assembled with an element adopting a serpentine shape, such as DNA templates. DNA must then be built ex nihilo, but modeling approaches are either not user-friendly or very long and fastidious. In this method chapter we show how to use GraphiteLifeExplorer, a software with a simple graphical user interface that enables the sketching of free forms of DNA, of any length, at the atomic scale, as fast as drawing a line on a sheet of paper. We took as an example the nucleoprotein complex of DNA gyrase, a bacterial topoisomerase whose structure has been determined using cryo-electron microscopy (Cryo-EM). Using GraphiteLifeExplorer, we could model in one go a 155 bp long and twisted DNA duplex that wraps around DNA gyrase in the cryo-EM map, improving the quality and interpretation of the final model compared to the initially published data.


Asunto(s)
Girasa de ADN/química , Girasa de ADN/metabolismo , ADN Bacteriano/metabolismo , Microscopía por Crioelectrón , ADN Bacteriano/química , Bases de Datos de Proteínas , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Conformación Proteica , Programas Informáticos
5.
PLoS One ; 8(1): e53609, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23308263

RESUMEN

The GraphiteLifeExplorer tool enables biologists to reconstruct 3D cellular complexes built from proteins and DNA molecules. Models of DNA molecules can be drawn in an intuitive way and assembled to proteins or others globular structures. Real time navigation and immersion offer a unique view to the reconstructed biological machinery.


Asunto(s)
ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Modelos Moleculares , Programas Informáticos , Algoritmos , Simulación por Computador , Conformación Molecular
6.
J Biol Chem ; 286(19): 17326-37, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21454657

RESUMEN

The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.


Asunto(s)
Adenosina Trifosfatasas/química , Reparación de la Incompatibilidad de ADN , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Adenosina Trifosfato/química , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Cisteína/química , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas MutL , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Terciaria de Proteína , Ultracentrifugación
7.
FEMS Microbiol Rev ; 35(2): 395-414, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20969605

RESUMEN

Formerly regarded as small 'bags' of nucleic acids with randomly diffusing enzymes, bacteria are organized by a sophisticated and tightly regulated molecular machinery. Here, we review qualitative and quantitative data on the intracellular organization of bacteria and provide a detailed inventory of macromolecular structures such as the divisome, the degradosome and the bacterial 'nucleolus'. We discuss how these metabolically active structures manage the spatial organization of the cell and how macromolecular crowding influences them. We present for the first time a visualization program, lifeexplorer, that can be used to study the interplay between metabolism and spatial organization of a prokaryotic cell.


Asunto(s)
Bacterias/química , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Estructuras Celulares/metabolismo , Sustancias Macromoleculares/metabolismo , Bacterias/citología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estructuras Celulares/química , Sustancias Macromoleculares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA