Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(6): e0214347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31211780

RESUMEN

Dietary insufficiencies have been well documented to decrease growth rates and survival (and therefore overall production) in fish aquaculture. By contrast, the effects of dietary insufficiencies on the sensory biology of cultured fish remains largely unstudied. Diets based solely on plant protein sources could have advantages over fish-based diets because of the cost and ecological effects of the latter, but plant proteins lack the amino acid taurine. Adequate levels of taurine are, however, necessary for the development of a fully functional visual system in mammals. As part of ongoing studies to determine the suitability of plant-based diets, we investigated the effects of normal and reduced taurine dietary levels on retinal anatomy and function in European sea bass (Dicentrarchus labrax). We could not demonstrate any effects of dietary taurine level on retinal anatomy, nor the functional properties of luminous sensitivity and temporal resolution (measured as flicker fusion frequency). We did, however, find an effect on spectral sensitivity. The peak of spectral sensitivity of individuals fed a 5% taurine diet was rightward shifted (i.e., towards longer wavelengths) relative to that of fish fed a 0% or 1.5% taurine diet. This difference in in spectral sensitivity was due to a relatively lower level of middle wavelength pigment (maximum absorbance .500 nm) in fish fed a 5% taurine diet. Changes in spectral sensitivity resulting from diets containing different taurine levels are unlikely to be detrimental to fish destined for market, but could be in fishes that are being reared for stock enhancement programs.


Asunto(s)
Lubina/fisiología , Taurina/administración & dosificación , Visión Ocular/efectos de los fármacos , Alimentación Animal , Animales , Peso Corporal/efectos de los fármacos , Explotaciones Pesqueras , Retina/anatomía & histología , Retina/efectos de los fármacos , Retina/fisiología , Taurina/farmacología
2.
Mar Drugs ; 15(6)2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28587202

RESUMEN

The UAG termination codon is generally recognized as the least efficient and least frequently used of the three universal stop codons. This is substantiated by numerous studies in an array of organisms. We present here evidence of a translational readthrough of a mutant nonsense UAG codon in the transcript from the cysteine sulfinic acid decarboxylase (csad) gene (ENSDARG00000026348) in zebrafish. The csad gene encodes the terminal enzyme in the taurine biosynthetic pathway. Taurine is a critical amino acid for all animals, playing several essential roles throughout the body, including modulation of the immune system. The sa9430 zebrafish strain (ZDB-ALT-130411-5055) has a point mutation leading to a premature stop codon (UAG) 20 amino acids 5' of the normal stop codon, UGA. Data from immunoblotting, enzyme activity assays, and mass spectrometry provide evidence that the mutant is making a CSAD protein identical to that of the wild-type (XP_009295318.1) in terms of size, activity, and amino acid sequence. UAG readthrough has been described in several species, but this is the first presentation of a case in fish. Also presented are the first data substantiating the ability of a fish CSAD to utilize cysteic acid, an alternative to the standard substrate cysteine sulfinic acid, to produce taurine.


Asunto(s)
Codón de Terminación/genética , Biosíntesis de Proteínas/genética , Taurina/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Carboxiliasas/genética , Ácido Cisteico/metabolismo , Mutación Puntual/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...