Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Diabetes ; 55(12): 3289-98, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17130472

RESUMEN

beta-Cell mass is determined by a dynamic balance of proliferation, neogenesis, and apoptosis. The precise mechanisms underlying compensatory beta-cell mass (BCM) homeostasis are not fully understood. To evaluate the processes that maintain normoglycemia and regulate BCM during pancreatic regeneration, C57BL/6 mice were analyzed for 15 days following 60% partial pancreatectomy (Px). BCM increased in Px mice from 2 days onwards and was approximately 68% of the shams by 15 days, partly due to enhanced beta-cell proliferation. A transient approximately 2.8-fold increase in the prevalence of beta-cell clusters/small islets at 2 days post-Px contributed substantially to BCM augmentation, followed by an increase in the number of larger islets at 15 days. To evaluate the signaling mechanisms that may regulate this compensatory growth, we examined key intermediates of the insulin signaling pathway. We found insulin receptor substrate (IRS)2 and enhanced-activated Akt immunoreactivity in islets and ducts that correlated with increased pancreatic duodenal homeobox (PDX)1 expression. In contrast, forkhead box O1 expression was decreased in islets but increased in ducts, suggesting distinct PDX1 regulatory mechanisms in these tissues. Px animals acutely administered insulin exhibited further enhancement in insulin signaling activity. These data suggest that the IRS2-Akt pathway mediates compensatory beta-cell growth by activating beta-cell proliferation with an increase in the number of beta-cell clusters/small islets.


Asunto(s)
Células Secretoras de Insulina/fisiología , Pancreatectomía , Actinas/metabolismo , Animales , Glucemia , División Celular , Ciclina D2 , Ciclinas/metabolismo , Immunoblotting , Células Secretoras de Insulina/citología , Islotes Pancreáticos/anatomía & histología , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , ARN/genética , ARN/aislamiento & purificación , Regeneración
2.
Diabetes ; 54(8): 2294-304, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16046294

RESUMEN

The physiological mechanisms underlying the compensatory growth of beta-cell mass in insulin-resistant states are poorly understood. Using the insulin-resistant Zucker fatty (fa/fa) (ZF) rat and the corresponding Zucker lean control (ZLC) rat, we investigated the factors contributing to the age-/obesity-related enhancement of beta-cell mass. A 3.8-fold beta-cell mass increase was observed in ZF rats as early as 5 weeks of age, an age that precedes severe insulin resistance by several weeks. Closer investigation showed that ZF rat pups were not born with heightened beta-cell mass but developed a modest increase over ZLC rats by 20 days that preceded weight gain or hyperinsulinemia that first developed at 24 days of age. In these ZF pups, an augmented survival potential of beta-cells of ZF pups was observed by enhanced activated (phospho-) Akt, phospho-BAD, and Bcl-2 immunoreactivity in the postweaning period. However, increased beta-cell proliferation in the ZF rats was only detected at 31 days of age, a period preceding massive beta-cell growth. During this phase, we also detected an increase in the numbers of small beta-cell clusters among ducts and acini, increased duct pancreatic/duodenal homeobox-1 (PDX-1) immunoreactivity, and an increase in islet number in the ZF rats suggesting duct- and acini-mediated heightened beta-cell neogenesis. Interestingly, in young ZF rats, specific cells associated with ducts, acini, and islets exhibited an increased frequency of PDX-1+/phospho-Akt+ staining, indicating a potential role for Akt in beta-cell differentiation. Thus, several adaptive mechanisms account for the compensatory growth of beta-cells in ZF rats, a combination of enhanced survival and neogenesis with a transient rise in proliferation before 5 weeks of age, with Akt serving as a potential mediator in these processes.


Asunto(s)
Envejecimiento , Resistencia a la Insulina , Islotes Pancreáticos/patología , Obesidad/patología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Diferenciación Celular , División Celular , Supervivencia Celular , Proteínas de Homeodominio/análisis , Etiquetado Corte-Fin in Situ , Islotes Pancreáticos/química , Masculino , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Zucker , Transducción de Señal , Transactivadores/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA