Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 364: 312-325, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37884210

RESUMEN

Cell membrane-derived particles (Mp) are rounded membrane-enclosed particles that are shed from tumor cells. Mp are formed from tumor membranes and are capable of tumor targeting and immunotherapeutic agents because they share membrane homology with parental cells; thus, they are under consideration as a drug delivery vehicle. Prostate-specific membrane antigen (PSMA), a transmembrane glycoprotein with enzymatic functionality, is highly expressed in Mp and extracellular vesicles (EV) from prostate cancer (PCa) with poor clinical prognosis. Although PSMA expression was previously shown in EV and Mp isolated from cell lines and from the blood of patients with high-grade PCa, no pathophysiological effects have been linked to PCa-derived Mp. Here, we compared Mp from PSMA-expressing (PSMA-Mp) and PSMA-non-expressing (WT-Mp) cells side by side in vitro and in vivo. PSMA-Mp can transfer PSMA and new phenotypic characteristics to the tumor microenvironment. The consequence of PSMA transfer to cells and increased secretion of vascular endothelial growth factor-A (VEGF-A), pro-angiogenic and pro-lymphangiogenic mediators, with increased 4E binding protein 1 (4EBP-1) phosphorylation.


Asunto(s)
Neoplasias de la Próstata , Factor A de Crecimiento Endotelial Vascular , Masculino , Humanos , Neoplasias de la Próstata/patología , Membrana Celular/metabolismo , Microambiente Tumoral
2.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609216

RESUMEN

The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature as a primary hallmark of cancer. Developing vasculature is difficult to evaluate in vivo but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an on chip approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of metastatic renal cell carcinoma spheroids and endothelial cells in a 3D environment. Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprout towards the tumor and mimic a vascular network. Bevacizumab, an angiogenic inhibitor, disrupted interactions between vessels and tumors, destroying the vascular network. The on chip approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Finally, observations in the vascularized tumor on chip permitted direct and conclusive quantification of this therapy in weeks as opposed to months in a comparable animal model. Teaser: Vascularized tumor on microfluidic chip provides opportunity to study targeted therapies and improves preclinical drug discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...