Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatology ; 77(2): 558-572, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35712786

RESUMEN

BACKGROUND AND AIMS: Reliable noninvasive biomarkers are an unmet clinical need for the diagnosis of NASH. This study investigates the diagnostic accuracy of the circulating triggering receptor expressed on myeloid cells 2 (plasma TREM2) as a biomarker for NASH in patients with NAFLD and elevated liver stiffness. APPROACH AND RESULTS: We collected cross-sectional, clinical data including liver biopsies from a derivation ( n = 48) and a validation cohort ( n = 170) of patients with elevated liver stiffness measurement (LSM ≥ 8.0 kPa). Patients with NAFLD activity scores (NAS) ≥4 were defined as having NASH. Plasma TREM2 levels were significantly elevated in patients with NASH of the derivation cohort, with an area under the receiver operating characteristics curve (AUROC) of 0.92 (95% confidence interval [CI], 0.84-0.99). In the validation cohort, plasma TREM2 level increased approximately two-fold in patients with NASH, and a strong diagnostic accuracy was confirmed (AUROC, 0.83; 95% CI, 0.77-0.89; p < 0.0001). Plasma TREM2 levels were associated with the individual histologic features of NAS: steatosis, lobular inflammation, and ballooning ( p < 0.0001), but only weakly with fibrosis stages. Dual cutoffs for rule-in and rule-out were explored: a plasma TREM2 level of ≤38 ng/ml was found to be an optimal NASH rule-out cutoff (sensitivity 90%; specificity 52%), whereas a plasma TREM2 level of ≥65 ng/ml was an optimal NASH rule-in cutoff (specificity 89%; sensitivity 54%). CONCLUSIONS: Plasma TREM2 is a plausible individual biomarker that can rule-in or rule-out the presence of NASH with high accuracy and thus has the potential to reduce the need for liver biopsies and to identify patients who are eligible for clinical trials in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Cirrosis Hepática/patología , Estudios Transversales , Biomarcadores , Biopsia , Glicoproteínas de Membrana , Receptores Inmunológicos
2.
J Mol Neurosci ; 61(2): 215-220, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27943094

RESUMEN

Primary brain calcification (PBC) is a neurodegenerative disorder characterized by calcium-phosphate deposits in the basal ganglia and often also other areas of the brain. The prevalent clinical manifestations are cognitive impairment, neuropsychiatric symptoms, and movement disorders. In recent years, monoallelic variants in SLC20A2, which encodes the type III sodium-dependent inorganic phosphate (Pi) transporter 2 (PiT2), have been linked to the familial form of PBC in 40-50% of the families reported worldwide as well as to sporadic cases of PBC. Further insight into the disease mechanism is, however, needed. Based on co-expression studies of wild-type and variant PiT2 in Xenopus laevis oocytes, the molecular disease mechanism associated with SLC20A2 missense variants has formerly been suggested to be haploinsufficiency. We have here used mammalian cells isolated from a Slc20a2 -/- mouse and co-expression of human wild-type and variant PiT2. Two of the variants studied have both been reported twice in unrelated PBC cases: PiT2D28N in two sporadic cases and PiT2E575K in a familial and a sporadic case. We find that in mammalian cells, the analyzed SLC20A2 missense variants can exert their effect in a dominant negative manner resulting in decreased wild-type PiT2 Pi transport. Thus, compared to monoallelic lack of functional PiT2 protein expression, which reasonably points towards haploinsufficiency, certain SLC20A2 missense variants may be more detrimental for cellular Pi uptake and potentially contribute to an earlier disease onset and/or a more severe phenotype as observed for Slc20a2 -/- mice compared to Slc20a2 +/- mice.


Asunto(s)
Encéfalo/metabolismo , Calcinosis/genética , Mutación Missense , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Animales , Encéfalo/patología , Calcinosis/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Transporte Iónico , Ratones , Ratones Endogámicos C57BL , Fenotipo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...