Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cell Rep ; 42(8): 112961, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561633

RESUMEN

Refractory and relapsed B cell lymphomas are often driven by the difficult-to-target oncogene MYC. Here, we report that high MYC expression stimulates proliferation and protects B lymphoma cells from apoptosis under normal oxidative stress levels and that compounds including N-acetylcysteine (NAC) and vitamin C (VitC) induce apoptosis by reducing oxidative stress. NAC and VitC injections effectively reduce tumor growth in lymphoma cells with high MYC expression but not in those with low MYC expression. MYC knockdown confers tumor resistance to NAC and VitC, while MYC activation renders B cells sensitive to these compounds. Mechanistically, NAC and VitC stimulate MYC binding to EGR1 through Cys117 of MYC, shifting its transcriptional output from cell cycle to apoptosis gene expression. These results identify a redox-controlled mechanism for MYC's role in maintaining proliferation and preventing apoptosis, offering a potential therapeutic rationale for evaluating NAC or VitC in patients with MYC-driven B cell lymphoma.

2.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175848

RESUMEN

Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN's contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Neuroblastoma , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Transducción de Señal/genética , Línea Celular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuroblastoma/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Amplificación de Genes
4.
Nat Commun ; 13(1): 5093, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064840

RESUMEN

The hypoxia-inducible factors (HIFs) regulate the main transcriptional pathway of response to hypoxia in T cells and are negatively regulated by von Hippel-Lindau factor (VHL). But the role of HIFs in the regulation of CD4 T cell responses during infection with M. tuberculosis isn't well understood. Here we show that mice lacking VHL in T cells (Vhl cKO) are highly susceptible to infection with M. tuberculosis, which is associated with a low accumulation of mycobacteria-specific T cells in the lungs that display reduced proliferation, altered differentiation and enhanced expression of inhibitory receptors. In contrast, HIF-1 deficiency in T cells is redundant for M. tuberculosis control. Vhl cKO mice also show reduced responses to vaccination. Further, VHL promotes proper MYC-activation, cell-growth responses, DNA synthesis, proliferation and survival of CD4 T cells after TCR activation. The VHL-deficient T cell responses are rescued by the loss of HIF-1α, indicating that the increased susceptibility to M. tuberculosis infection and the impaired responses of Vhl-deficient T cells are HIF-1-dependent.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Tuberculosis , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Ratones , Linfocitos T/inmunología , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/prevención & control , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/inmunología
5.
Front Mol Biosci ; 9: 823195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720128

RESUMEN

Restoration of the p53 tumor suppressor for personalised cancer therapy is a promising treatment strategy. However, several high-affinity MDM2 inhibitors have shown substantial side effects in clinical trials. Thus, elucidation of the molecular mechanisms of action of p53 reactivating molecules with alternative functional principle is of the utmost importance. Here, we report a discovery of a novel allosteric mechanism of p53 reactivation through targeting the p53 N-terminus which promotes inhibition of both p53/MDM2 (murine double minute 2) and p53/MDM4 interactions. Using biochemical assays and molecular docking, we identified the binding site of two p53 reactivating molecules, RITA (reactivation of p53 and induction of tumor cell apoptosis) and protoporphyrin IX (PpIX). Ion mobility-mass spectrometry revealed that the binding of RITA to serine 33 and serine 37 is responsible for inducing the allosteric shift in p53, which shields the MDM2 binding residues of p53 and prevents its interactions with MDM2 and MDM4. Our results point to an alternative mechanism of blocking p53 interaction with MDM2 and MDM4 and may pave the way for the development of novel allosteric inhibitors of p53/MDM2 and p53/MDM4 interactions.

6.
Cancer Res Commun ; 2(2): 110-130, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-36860495

RESUMEN

MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance: While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular , Unión Proteica , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc
7.
Cancer Res Commun ; 2(3): 182-201, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36874405

RESUMEN

Deregulated expression of MYC family oncogenes occurs frequently in human cancer and is often associated with aggressive disease and poor prognosis. While MYC is a highly warranted target, it has been considered "undruggable," and no specific anti-MYC drugs are available in the clinic. We recently identified molecules named MYCMIs that inhibit the interaction between MYC and its essential partner MAX. Here we show that one of these molecules, MYCMI-7, efficiently and selectively inhibits MYC:MAX and MYCN:MAX interactions in cells, binds directly to recombinant MYC, and reduces MYC-driven transcription. In addition, MYCMI-7 induces degradation of MYC and MYCN proteins. MYCMI-7 potently induces growth arrest/apoptosis in tumor cells in a MYC/MYCN-dependent manner and downregulates the MYC pathway on a global level as determined by RNA sequencing. Sensitivity to MYCMI-7 correlates with MYC expression in a panel of 60 tumor cell lines and MYCMI-7 shows high efficacy toward a collection of patient-derived primary glioblastoma and acute myeloid leukemia (AML) ex vivo cultures. Importantly, a variety of normal cells become G1 arrested without signs of apoptosis upon MYCMI-7 treatment. Finally, in mouse tumor models of MYC-driven AML, breast cancer, and MYCN-amplified neuroblastoma, treatment with MYCMI-7 downregulates MYC/MYCN, inhibits tumor growth, and prolongs survival through apoptosis with few side effects. In conclusion, MYCMI-7 is a potent and selective MYC inhibitor that is highly relevant for the development into clinically useful drugs for the treatment of MYC-driven cancer. Significance: Our findings demonstrate that the small-molecule MYCMI-7 binds MYC and inhibits interaction between MYC and MAX, thereby hampering MYC-driven tumor cell growth in culture and in vivo while sparing normal cells.


Asunto(s)
Neuroblastoma , Animales , Ratones , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Proliferación Celular , Ciclo Celular
8.
Methods Mol Biol ; 2318: 241-254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019294

RESUMEN

Cellular senescence plays a role in several physiological processes including aging, embryonic development, tissue remodeling, and wound healing and is considered one of the main barriers against tumor development. Studies of normal and tumor cells both in culture and in vivo suggest that MYC plays an important role in regulating senescence, thereby contributing to tumor development. We have previously described different common methods to measure senescence in cell cultures and in tissues. Unfortunately, there is no unique marker that unambiguously defines a senescent state, and it is therefore necessary to combine measurements of several different markers in order to assure the correct identification of senescent cells. Here we describe protocols for simultaneous detection of multiple senescence markers in situ, a quantitative fluorogenic method to measure senescence-associated ß-galactosidase activity (SA-ß-gal), and a new method to detect senescent cells based on the Sudan Black B (SBB) analogue GL13, which is applicable to formalin-fixed paraffin-embedded tissues. The application of these methods in various systems will hopefully shed further light on the role of MYC in regulation of senescence, and how that impacts normal physiological processes as well as diseases and in particular cancer development.


Asunto(s)
Senescencia Celular/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Coloración y Etiquetado/métodos , Envejecimiento , Compuestos Azo/química , Biomarcadores , Células Cultivadas , Senescencia Celular/genética , ADN/genética , Colorantes Fluorescentes/química , Genes myc/genética , Genes myc/fisiología , Humanos , Naftalenos/química , Proteínas Proto-Oncogénicas c-myc/genética , beta-Galactosidasa/análisis , beta-Galactosidasa/metabolismo
9.
Cell Cycle ; 20(1): 23-38, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356836

RESUMEN

Deregulated expression of the MYC oncogene is a frequent event during tumorigenesis and generally correlates with aggressive disease and poor prognosis. While MYC is a potent inducer of apoptosis, it often suppresses cellular senescence, which together with apoptosis is an important barrier against tumor development. For this latter function, MYC is dependent on cyclin-dependent kinase 2 (CDK2). Here, we utilized a MYC/BCL-XL-driven mouse model of acute myeloblastic leukemia (AML) to investigate whether pharmacological inhibition of CDK2 can inhibit MYC-driven tumorigenesis through induction of senescence. Purified mouse hematopoietic stem cells transduced with MYC and BCL-XL were transplanted into lethally irradiated mice, leading to the development of massive leukemia and subsequent death 15-17 days after transplantation. Upon disease onset, mice were treated with the selective CDK2 inhibitor CVT2584 or vehicle either by daily intraperitoneal injections or continuous delivery via mini-pumps. CVT2584 treatment delayed disease onset and moderately but significantly improved survival of mice. Flow cytometry revealed a significant decrease in tumor load in the spleen, liver and bone marrow of CVT2584-treated compared to vehicle-treated mice. This was correlated with induced senescence evidenced by reduced cell proliferation, increased senescence-associated ß-galactosidase activity and heterochromatin foci, expression of p19ARF and p21CIP1, and reduced phosphorylation (activation) of pRb, while very few apoptotic cells were observed. In addition, phosphorylation of MYC at Ser-62 was decreased. In summary, inhibition of CDK2 delayed MYC/BCL-XL-driven AML linked to senescence induction. Our results suggest that CDK2 is a promising target for pro-senescence cancer therapy, in particular for MYC-driven tumors, including leukemia.


Asunto(s)
Senescencia Celular/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Leucemia/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína bcl-X/metabolismo , Animales , Apoptosis/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Femenino , Humanos , Leucemia/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosforilación/genética
10.
Invest New Drugs ; 39(2): 587-594, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33052557

RESUMEN

Background The MYC oncogene is one of the most frequently altered driver genes in cancer. MYC is thus a potential target for cancer treatment as well as a biomarker for the disease. However, as a target for treatment, MYC has traditionally been regarded as "undruggable" or difficult to target. We set out to evaluate the efficacy of a novel MYC inhibitor known as MYCMI-6, which acts by preventing MYC from interacting with its cognate partner MAX. Methods MYCMI-6 response was assessed in a panel of breast cancer cell lines using MTT assays and flow cytometry. MYC gene amplification, mRNA and protein expression was analysed using the TCGA and METABRIC databases. Results MYCMI-6 inhibited cell growth in breast cancer cell lines with IC50 values varying form 0.3 µM to >10 µM. Consistent with its ability to decrease cell growth, MYCMI-6 was found to induce apoptosis in two cell lines in which growth was inhibited but not in two cell lines that were resistant to growth inhibition. Across all breast cancers, MYC was found to be amplified in 15.3% of cases in the TCGA database and 26% in the METABRIC database. Following classification of the breast cancers by their molecular subtypes, MYC was most frequently amplified and exhibited highest expression at both mRNA and protein level in the basal subtype. Conclusions Based on these findings, we conclude that for patients with breast cancer, anti-MYC therapy is likely to be most efficacious in patients with the basal subtype.


Asunto(s)
Acridinas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Genes myc/efectos de los fármacos , Piridinas/farmacología , Biomarcadores de Tumor , Ciclo Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Peso Molecular , ARN Mensajero
11.
Elife ; 92020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32628111

RESUMEN

Inhibition of WEE1 kinase by AZD1775 has shown promising results in clinical cancer trials, but markers predicting AZD1775 response are lacking. Here we analysed AZD1775 response in a panel of human breast cancer (BC) cell lines by global proteome/transcriptome profiling and identified two groups of basal-like BC (BLBCs): 'PTEN low' BLBCs were highly sensitive to AZD1775 and failed to recover following removal of AZD1775, while 'PTEN high' BLBCs recovered. AZD1775 induced phosphorylation of DNA-PK, protecting cells from replication-associated DNA damage and promoting cellular recovery. Deletion of DNA-PK or PTEN, or inhibition of DNA-PK sensitized recovering BLBCs to AZD1775 by abrogating replication arrest, allowing replication despite DNA damage. This was linked to reduced CHK1 activation, increased cyclin E levels and apoptosis. In conclusion, we identified PTEN and DNA-PK as essential regulators of replication checkpoint arrest in response to AZD1775 and defined PTEN as a promising biomarker for efficient WEE1 cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Proteína Quinasa Activada por ADN/genética , Fosfohidrolasa PTEN/genética , Proteínas Tirosina Quinasas/genética , Pirazoles/farmacología , Pirimidinonas/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteína Quinasa Activada por ADN/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Fosfohidrolasa PTEN/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteoma
12.
Cell Cycle ; 17(24): 2697-2715, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30526305

RESUMEN

The MYC and RAS oncogenes are sufficient for transformation of normal rodent cells. This cooperativity is at least in part based on suppression of RAS-induced cellular senescence by MYC and block of MYC-induced apoptosis by RAS - thereby canceling out two main barriers against tumor development. However, it remains unclear whether MYC and RAS cooperate in this way in human cells, where MYC and RAS are not sufficient for transformation. To address this question, we established a combined Tet-inducible H-RASV12 and hydroxytamoxifen-inducible MycER system in normal human BJ fibroblasts. We show here that activation of RAS alone induced senescence while activation of MYC alone or together with RAS triggered DNA damage, induction of p53 and massive apoptosis, suggesting that RAS cannot rescue MYC-induced apoptosis in this system. Although coexpression with MYC reduced certain RAS-induced senescence markers (histone H3 lysine 9 trimethylation and senescence-associated ß-GAL activity), the induction of the senescence marker p16INK4A was further enhanced and the culture ceased to proliferate within a few days, revealing that MYC could not fully suppress RAS-induced senescence. Furthermore, depletion of p53, which enhanced proliferation and rescued the cells from RAS-induced senescence, did not abrogate MYC-induced apoptosis. We conclude that MYC and RAS are unable to cooperate in overcoming senescence and apoptosis in normal human fibroblasts even after depletion of p53, indicating that additional oncogenic events are required to abrogate these fail-safe mechanisms and pave the way for cellular transformation. These findings have implications for our understanding of the transformation process in human cells. Abbreviations and acronyms: CDK: Cyclin-dependent kinase; DDR: DNA damage response; DOX: Doxycycline; EdU: 5-ethynyl-2'-deoxyuridine; FACS: Fluorescence Activated Cell Sorting; MycER: MYC-estrogen receptor; OHT: 4-hydroxytamoxifen; OIS: Oncogene-induced senescence; PP2A: Protein phosphatase 2A; ROS: Reactive oxygen species; SA-ß-GAL: Senescence-associated ß-galactosidase; SAHF: Senescence-associated heterochromatin foci; shRNA: Short hairpin RNA; YFP: Yellow fluorescent protein.


Asunto(s)
Apoptosis , Senescencia Celular , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas ras/metabolismo , Apoptosis/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Tamoxifeno/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/genética
13.
Sci Rep ; 8(1): 10064, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968736

RESUMEN

MYC is a key player in tumor development, but unfortunately no specific MYC-targeting drugs are clinically available. MYC is strictly dependent on heterodimerization with MAX for transcription activation. Aiming at targeting this interaction, we identified MYCMI-6 in a cell-based protein interaction screen for small inhibitory molecules. MYCMI-6 exhibits strong selective inhibition of MYC:MAX interaction in cells and in vitro at single-digit micromolar concentrations, as validated by split Gaussia luciferase, in situ proximity ligation, microscale thermophoresis and surface plasmon resonance (SPR) assays. Further, MYCMI-6 blocks MYC-driven transcription and binds selectively to the MYC bHLHZip domain with a KD of 1.6 ± 0.5 µM as demonstrated by SPR. MYCMI-6 inhibits tumor cell growth in a MYC-dependent manner with IC50 concentrations as low as 0.5 µM, while sparing normal cells. The response to MYCMI-6 correlates with MYC expression based on data from 60 human tumor cell lines and is abrogated by MYC depletion. Further, it inhibits MYC:MAX interaction, reduces proliferation and induces massive apoptosis in tumor tissue from a MYC-driven xenograft tumor model without severe side effects. Since MYCMI-6 does not affect MYC expression, it is a unique molecular tool to specifically target MYC:MAX pharmacologically and it has good potential for drug development.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/antagonistas & inhibidores , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diaminas/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/farmacología , Animales , Apoptosis/fisiología , Células COS , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Células HeLa , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Genes (Basel) ; 8(7)2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28665315

RESUMEN

MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are the cyclin E/A/cyclin-dependent kinase 2 (CDK2) complexes, the CDK inhibitor p27KIP1 (p27) and the E3 ubiquitin ligase component S-phase kinase-associated protein 2 (SKP2), which control each other by forming a triangular network. MYC is engaged in bidirectional crosstalk with each of these players; while MYC regulates their expression and/or activity, these factors in turn modulate MYC through protein interactions and post-translational modifications including phosphorylation and ubiquitylation, impacting on MYC's transcriptional output on genes involved in cell cycle progression and senescence. Here we elaborate on these network interactions with MYC and their impact on transcription, cell cycle, replication and stress signaling, and on the role of other players interconnected to this network, such as CDK1, the retinoblastoma protein (pRB), protein phosphatase 2A (PP2A), the F-box proteins FBXW7 and FBXO28, the RAS oncoprotein and the ubiquitin/proteasome system. Finally, we describe how the MYC/CDK2/p27/SKP2 axis impacts on tumor development and discuss possible ways to interfere therapeutically with this system to improve cancer treatment.

15.
Oncotarget ; 7(3): 2837-54, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26701207

RESUMEN

The Myc oncoprotein is tightly regulated at multiple levels including ubiquitin-mediated protein turnover. We recently demonstrated that inhibition of Cdk2-mediated phosphorylation of Myc at Ser-62 pharmacologically or through interferon (IFN)-γ-induced expression of p27(Kip1) (p27) repressed Myc's activity to suppress cellular senescence and differentiation. In this study we identified an additional activity of p27 to interfere with Myc independent of Ser-62 phosphorylation. p27 is required and sufficient for IFN-γ-induced turnover of Myc. p27 interacted with Myc in the nucleus involving the C-termini of the two proteins, including Myc box 4 of Myc. The C-terminus but not the Cdk2 binding fragment of p27 was sufficient for inducing Myc degradation. Protein expression data of The Cancer Genome Atlas breast invasive carcinoma set revealed significantly lower Myc protein levels in tumors with highly expressed p27 lacking phosphorylation at Thr-157--a marker for active p27 localized in the nucleus. Further, these conditions correlated with favorable tumor stage and patient outcome. This novel regulation of Myc by IFN-γ/p27(KIP1) potentially offers new possibilities for therapeutic intervention in tumors with deregulated Myc.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Interferón gamma/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Células COS , Línea Celular Tumoral , Núcleo Celular/metabolismo , Senescencia Celular/fisiología , Chlorocebus aethiops , Quinasa 2 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Fosforilación , Unión Proteica
16.
Cancer Discov ; 5(7): 701-3, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26152922

RESUMEN

There is a great interest in finding ways to inhibit the expression or activity of the "undruggable" MYC, a master regulator of transcription and one of the most deadly oncoproteins in human cancer. In this issue of Cancer Discovery, Wiegering and colleagues find a way of inhibiting translation of MYC in colorectal cancer cells by directly targeting the translation initiation factor eIF4A, resulting in inhibition of MYC-dependent proliferation of colorectal tumor cells in vitro and in vivo.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Triterpenos/administración & dosificación , Animales , Humanos
17.
Respir Med ; 109(1): 88-95, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25528948

RESUMEN

BACKGROUND: Chronic bronchitis is related to worse general health status, exacerbations and mortality among subjects with COPD. Also less longstanding cough and phlegm may be related to worse prognosis in COPD but this has rarely been evaluated in population-based studies. AIM: To evaluate the relationship between productive cough, exacerbations and mortality among subjects with and without COPD. METHOD: All subjects with COPD (n = 993) were identified together with sex- and age matched reference subjects without obstructive lung function impairment from four population-based cohorts in 2002-04. Baseline spirometry and structured interview including data on exacerbations last 12 months were used in this study (n = 1986) together with mortality data collected until February 2012. RESULTS: Productive cough was more common in COPD than non-COPD (42.8 vs. 23.5%, p < 0.001), more common in men than women, but associated to exacerbations in both sexes. COPD-subjects with productive cough had the highest risk for exacerbations in both sexes and they had a significantly increased risk for death (HR 1.48, 95% CI 1.13-1.94) also when adjusted for sex, age, BMI, smoking habits and heart disease. CONCLUSION: Productive cough was common and increased the risk for exacerbations in both sexes, in both COPD and non-COPD. COPD-subjects with productive cough had the highest risk for exacerbations and a significantly higher risk for death also after adjustment for common risk factors.


Asunto(s)
Tos/mortalidad , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Adulto , Anciano , Bronquitis Crónica/complicaciones , Bronquitis Crónica/mortalidad , Estudios de Casos y Controles , Tos/etiología , Estudios Transversales , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Pronóstico , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Factores de Riesgo , Factores Sexuales , Fumar/efectos adversos , Fumar/mortalidad , Suecia/epidemiología
18.
J Biol Chem ; 289(32): 22221-36, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24951594

RESUMEN

Myc expression is deregulated in many human cancers. A yeast two-hybrid screen has revealed that the transcriptional repressor Sin3b interacts with Myc protein. Endogenous Myc and Sin3b co-localize and interact in the nuclei of human and rat cells, as assessed by co-immunoprecipitation, immunofluorescence, and proximity ligation assay. The interaction is Max-independent. A conserved Myc region (amino acids 186-203) is required for the interaction with Sin3 proteins. Histone deacetylase 1 is recruited to Myc-Sin3b complexes, and its deacetylase activity is required for the effects of Sin3b on Myc. Myc and Sin3a/b co-occupied many sites on the chromatin of human leukemia cells, although the presence of Sin3 was not associated with gene down-regulation. In leukemia cells and fibroblasts, Sin3b silencing led to Myc up-regulation, whereas Sin3b overexpression induced Myc deacetylation and degradation. An analysis of Sin3b expression in breast tumors revealed an association between low Sin3b expression and disease progression. The data suggest that Sin3b decreases Myc protein levels upon Myc deacetylation. As Sin3b is also required for transcriptional repression by Mxd-Max complexes, our results suggest that, at least in some cell types, Sin3b limits Myc activity through two complementary activities: Mxd-dependent gene repression and reduction of Myc levels.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Genes myc , Células HEK293 , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Humanos , Células K562 , Persona de Mediana Edad , Modelos Biológicos , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Ratas , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
19.
Cancer Res ; 74(16): 4222-9, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24934810

RESUMEN

The activated RAS/RAF cascade plays a crucial role in lung cancer, but is also known to induce cellular senescence, a major barrier imposed on tumor cells early in tumorigenesis. MYC is a key factor in suppression of RAS/BRAF(V600E)-induced senescence in vitro. However, it is still unclear whether MYC has the same role during tumor development in vivo. Using a conditional, compound knock-in model of Cre-activated BRAF(V600E) and tamoxifen-regulatable MycER, we show that tamoxifen-induced activation of MYC accelerated the onset and increased the number and size of BRAF(V600E)-driven adenomas in a dose-dependent manner, resulting in reduced survival. Furthermore, MYC activation leads to reduced expression of the senescence markers p16(INK4A), p21(CIP1), and H3K9me3-containing heterochromatin foci, and an increased percentage of Ki67(+) tumor cells. This suggests that MYC already early during tumor formation suppresses a BRAF(V600E)-induced senescence-like state. Initial activation of MYC followed by tamoxifen withdrawal still resulted in an increased number of tumors and reduced survival. However, these tumors were of smaller size, showed increased expression of p16(INK4A) and p21(CIP1), and reduced number of Ki67(+) cells, indicating that MYC inactivation restores BRAF(V600E)-induced senescence. Surprisingly, MYC activation did not promote adenoma to carcinoma progression. This suggests that senescence suppression by MYC is a discrete step in tumor development important for sustained tumor growth but preceding malignant transformation and that additional oncogenic events are required for carcinoma development and metastasis. These findings contribute to our understanding of the neoplastic transformation process, with implications for future treatment strategies.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Procesos de Crecimiento Celular/fisiología , Senescencia Celular , Estudios de Cohortes , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-myc/genética , Tamoxifeno/farmacología , Activación Transcripcional
20.
Methods Mol Biol ; 1012: 99-116, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24006061

RESUMEN

Studies in primary and tumor cells suggest that MYC plays an important role in regulating cellular senescence, thereby impacting on tumor development. Here we describe different common methods to measure senescence in cell cultures and in tissues. These include measurement of senescence-associated ß-galactosidase activity (SA-ß-gal), senescence-associated heterochromatin foci (SAHFs), proliferative arrest, morphological changes, and expression and activity of proteins involved in the senescence process, such as p53 and Rb pathway proteins and secretory proteins. It is important to note that there is no unique marker that unambiguously defines a senescent state, and it is therefore necessary to combine measurements of several different markers that together determine whether cells are senescent or not. Measurement of senescence is an important aspect of studies of MYC biology and will improve our understanding of MYC function and regulation both in preclinical and clinical settings. This may form the basis for new concepts of pro-senescence therapy to combat MYC in cancer.


Asunto(s)
Senescencia Celular/genética , Proteínas Proto-Oncogénicas c-myc/genética , Actinas/metabolismo , Puntos de Control del Ciclo Celular , Proliferación Celular , Citometría de Flujo , Expresión Génica , Genes Reporteros , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...