Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(5): e1011274, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768268

RESUMEN

Molecular dissection of meiotic recombination in mammals, combined with population-genetic and comparative studies, have revealed a complex evolutionary dynamic characterized by short-lived recombination hotspots. Hotspots are chromosome positions containing DNA sequences where the protein PRDM9 can bind and cause crossing-over. To explain these fast evolutionary dynamic, a so-called intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hotspot extinction (the hotspot conversion paradox), followed by positive selection favoring mutant PRDM9 alleles recognizing new sequence motifs. Although this model predicts many empirical observations, the exact causes of the positive selection acting on new PRDM9 alleles is still not well understood. In this direction, experiment on mouse hybrids have suggested that, in addition to targeting double strand breaks, PRDM9 has another role during meiosis. Specifically, PRDM9 symmetric binding (simultaneous binding at the same site on both homologues) would facilitate homology search and, as a result, the pairing of the homologues. Although discovered in hybrids, this second function of PRDM9 could also be involved in the evolutionary dynamic observed within populations. To address this point, here, we present a theoretical model of the evolutionary dynamic of meiotic recombination integrating current knowledge about the molecular function of PRDM9. Our modeling work gives important insights into the selective forces driving the turnover of recombination hotspots. Specifically, the reduced symmetrical binding of PRDM9 caused by the loss of high affinity binding sites induces a net positive selection eliciting new PRDM9 alleles recognizing new targets. The model also offers new insights about the influence of the gene dosage of PRDM9, which can paradoxically result in negative selection on new PRDM9 alleles entering the population, driving their eviction and thus reducing standing variation at this locus.

2.
Proc Natl Acad Sci U S A ; 120(11): e2214977120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897968

RESUMEN

Adaptation in protein-coding sequences can be detected from multiple sequence alignments across species or alternatively by leveraging polymorphism data within a population. Across species, quantification of the adaptive rate relies on phylogenetic codon models, classically formulated in terms of the ratio of nonsynonymous over synonymous substitution rates. Evidence of an accelerated nonsynonymous substitution rate is considered a signature of pervasive adaptation. However, because of the background of purifying selection, these models are potentially limited in their sensitivity. Recent developments have led to more sophisticated mutation-selection codon models aimed at making a more detailed quantitative assessment of the interplay between mutation, purifying, and positive selection. In this study, we conducted a large-scale exome-wide analysis of placental mammals with mutation-selection models, assessing their performance at detecting proteins and sites under adaptation. Importantly, mutation-selection codon models are based on a population-genetic formalism and thus are directly comparable to the McDonald and Kreitman test at the population level to quantify adaptation. Taking advantage of this relationship between phylogenetic and population genetics analyses, we integrated divergence and polymorphism data across the entire exome for 29 populations across 7 genera and showed that proteins and sites detected to be under adaptation at the phylogenetic scale are also under adaptation at the population-genetic scale. Altogether, our exome-wide analysis shows that phylogenetic mutation-selection codon models and the population-genetic test of adaptation can be reconciled and are congruent, paving the way for integrative models and analyses across individuals and populations.


Asunto(s)
Evolución Molecular , Selección Genética , Humanos , Femenino , Embarazo , Animales , Filogenia , Placenta , Genética de Población , Codón , Modelos Genéticos , Mamíferos/genética
3.
Syst Biol ; 72(4): 767-780, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-36946562

RESUMEN

Accurate phylogenies are fundamental to our understanding of the pattern and process of evolution. Yet, phylogenies at deep evolutionary timescales, with correspondingly long branches, have been fraught with controversy resulting from conflicting estimates from models with varying complexity and goodness of fit. Analyses of historical as well as current empirical datasets, such as alignments including Microsporidia, Nematoda, or Platyhelminthes, have demonstrated that inadequate modeling of across-site compositional heterogeneity, which is the result of biochemical constraints that lead to varying patterns of accepted amino acids along sequences, can lead to erroneous topologies that are strongly supported. Unfortunately, models that adequately account for across-site compositional heterogeneity remain computationally challenging or intractable for an increasing fraction of contemporary datasets. Here, we introduce "compositional constraint analysis," a method to investigate the effect of site-specific constraints on amino acid composition on phylogenetic inference. We show that more constrained sites with lower diversity and less constrained sites with higher diversity exhibit ostensibly conflicting signals under models ignoring across-site compositional heterogeneity that lead to long-branch attraction artifacts and demonstrate that more complex models accounting for across-site compositional heterogeneity can ameliorate this bias. We present CAT-posterior mean site frequencies (PMSF), a pipeline for diagnosing and resolving phylogenetic bias resulting from inadequate modeling of across-site compositional heterogeneity based on the CAT model. CAT-PMSF is robust against long-branch attraction in all alignments we have examined. We suggest using CAT-PMSF when convergence of the CAT model cannot be assured. We find evidence that compositionally constrained sites are driving long-branch attraction in two metazoan datasets and recover evidence for Porifera as the sister group to all other animals. [Animal phylogeny; cross-site heterogeneity; long-branch attraction; phylogenomics.].


Asunto(s)
Microsporidios , Animales , Filogenia , Sesgo , Modelos Genéticos
4.
Syst Biol ; 72(3): 616-638, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-36810802

RESUMEN

There is still no consensus as to how to select models in Bayesian phylogenetics, and more generally in applied Bayesian statistics. Bayes factors are often presented as the method of choice, yet other approaches have been proposed, such as cross-validation or information criteria. Each of these paradigms raises specific computational challenges, but they also differ in their statistical meaning, being motivated by different objectives: either testing hypotheses or finding the best-approximating model. These alternative goals entail different compromises, and as a result, Bayes factors, cross-validation, and information criteria may be valid for addressing different questions. Here, the question of Bayesian model selection is revisited, with a focus on the problem of finding the best-approximating model. Several model selection approaches were re-implemented, numerically assessed and compared: Bayes factors, cross-validation (CV), in its different forms (k-fold or leave-one-out), and the widely applicable information criterion (wAIC), which is asymptotically equivalent to leave-one-out cross-validation (LOO-CV). Using a combination of analytical results and empirical and simulation analyses, it is shown that Bayes factors are unduly conservative. In contrast, CV represents a more adequate formalism for selecting the model returning the best approximation of the data-generating process and the most accurate estimates of the parameters of interest. Among alternative CV schemes, LOO-CV and its asymptotic equivalent represented by the wAIC, stand out as the best choices, conceptually and computationally, given that both can be simultaneously computed based on standard Markov chain Monte Carlo runs under the posterior distribution. [Bayes factor; cross-validation; marginal likelihood; model comparison; wAIC.].


Asunto(s)
Filogenia , Teorema de Bayes , Simulación por Computador , Probabilidad , Cadenas de Markov , Método de Montecarlo
5.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35021218

RESUMEN

Phylogenetic codon models are routinely used to characterize selective regimes in coding sequences. Their parametric design, however, is still a matter of debate, in particular concerning the question of how to account for differing nucleotide frequencies and substitution rates. This problem relates to the fact that nucleotide composition in protein-coding sequences is the result of the interactions between mutation and selection. In particular, because of the structure of the genetic code, the nucleotide composition differs between the three coding positions, with the third position showing a more extreme composition. Yet, phylogenetic codon models do not correctly capture this phenomenon and instead predict that the nucleotide composition should be the same for all three positions. Alternatively, some models allow for different nucleotide rates at the three positions, an approach conflating the effects of mutation and selection on nucleotide composition. In practice, it results in inaccurate estimation of the strength of selection. Conceptually, the problem comes from the fact that phylogenetic codon models do not correctly capture the fixation bias acting against the mutational pressure at the mutation-selection equilibrium. To address this problem and to more accurately identify mutation rates and selection strength, we present an improved codon modeling approach where the fixation rate is not seen as a scalar, but as a tensor. This approach gives an accurate representation of how mutation and selection oppose each other at equilibrium and yields a reliable estimate of the mutational process, while disentangling the mean fixation probabilities prevailing in different mutational directions.


Asunto(s)
Código Genético , Selección Genética , Codón/genética , Modelos Genéticos , Mutación , Filogenia
6.
Life (Basel) ; 11(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34685422

RESUMEN

Natural selection is commonly seen not just as an explanation for adaptive evolution, but as the inevitable consequence of "heritable variation in fitness among individuals". Although it remains embedded in biological concepts, such a formalisation makes it tempting to explore whether this precondition may be met not only in life as we know it, but also in other physical systems. This would imply that these systems are subject to natural selection and may perhaps be investigated in a biological framework, where properties are typically examined in light of their putative functions. Here we relate the major questions that were debated during a three-day workshop devoted to discussing whether natural selection may take place in non-living physical systems. We start this report with a brief overview of research fields dealing with "life-like" or "proto-biotic" systems, where mimicking evolution by natural selection in test tubes stands as a major objective. We contend the challenge may be as much conceptual as technical. Taking the problem from a physical angle, we then discuss the framework of dissipative structures. Although life is viewed in this context as a particular case within a larger ensemble of physical phenomena, this approach does not provide general principles from which natural selection can be derived. Turning back to evolutionary biology, we ask to what extent the most general formulations of the necessary conditions or signatures of natural selection may be applicable beyond biology. In our view, such a cross-disciplinary jump is impeded by reliance on individuality as a central yet implicit and loosely defined concept. Overall, these discussions thus lead us to conjecture that understanding, in physico-chemical terms, how individuality emerges and how it can be recognised, will be essential in the search for instances of evolution by natural selection outside of living systems.

7.
Genome Biol Evol ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34190972

RESUMEN

The nearly neutral theory predicts specific relations between effective population size (Ne) and patterns of divergence and polymorphism, which depend on the shape of the distribution of fitness effects (DFE) of new mutations. However, testing these relations is not straightforward, owing to the difficulty in estimating Ne. Here, we introduce an integrative framework allowing for an explicit reconstruction of the phylogenetic history of Ne, thus leading to a quantitative test of the nearly neutral theory and an estimation of the allometric scaling of the ratios of nonsynonymous over synonymous polymorphism (πN/πS) and divergence (dN/dS) with respect to Ne. As an illustration, we applied our method to primates, for which the nearly neutral predictions were mostly verified. Under a purely nearly neutral model with a constant DFE across species, we find that the variation in πN/πS and dN/dS as a function of Ne is too large to be compatible with current estimates of the DFE based on site frequency spectra. The reconstructed history of Ne shows a 10-fold variation across primates. The mutation rate per generation u, also reconstructed over the tree by the method, varies over a 3-fold range and is negatively correlated with Ne. As a result of these opposing trends for Ne and u, variation in πS is intermediate, primarily driven by Ne but substantially influenced by u. Altogether, our integrative framework provides a quantitative assessment of the role of Ne and u in modulating patterns of genetic variation, while giving a synthetic picture of their history over the clade.


Asunto(s)
Evolución Molecular , Selección Genética , Animales , Variación Genética , Modelos Genéticos , Tasa de Mutación , Filogenia , Densidad de Población
8.
Mol Biol Evol ; 38(10): 4573-4587, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34191010

RESUMEN

Mutation-selection phylogenetic codon models are grounded on population genetics first principles and represent a principled approach for investigating the intricate interplay between mutation, selection, and drift. In their current form, mutation-selection codon models are entirely characterized by the collection of site-specific amino-acid fitness profiles. However, thus far, they have relied on the assumption of a constant genetic drift, translating into a unique effective population size (Ne) across the phylogeny, clearly an unrealistic assumption. This assumption can be alleviated by introducing variation in Ne between lineages. In addition to Ne, the mutation rate (µ) is susceptible to vary between lineages, and both should covary with life-history traits (LHTs). This suggests that the model should more globally account for the joint evolutionary process followed by all of these lineage-specific variables (Ne, µ, and LHTs). In this direction, we introduce an extended mutation-selection model jointly reconstructing in a Bayesian Monte Carlo framework the fitness landscape across sites and long-term trends in Ne, µ, and LHTs along the phylogeny, from an alignment of DNA coding sequences and a matrix of observed LHTs in extant species. The model was tested against simulated data and applied to empirical data in mammals, isopods, and primates. The reconstructed history of Ne in these groups appears to correlate with LHTs or ecological variables in a way that suggests that the reconstruction is reasonable, at least in its global trends. On the other hand, the range of variation in Ne inferred across species is surprisingly narrow. This last point suggests that some of the assumptions of the model, in particular concerning the assumed absence of epistatic interactions between sites, are potentially problematic.


Asunto(s)
Modelos Genéticos , Selección Genética , Animales , Teorema de Bayes , Evolución Molecular , Mamíferos , Mutación , Filogenia , Densidad de Población
10.
Front Mol Biosci ; 8: 626042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791336

RESUMEN

Bivalves represent valuable taxonomic group for aging studies given their wide variation in longevity (from 1-2 to >500 years). It is well known that aging is associated to the maintenance of Reactive Oxygen Species homeostasis and that mitochondria phenotype and genotype dysfunctions accumulation is a hallmark of these processes. Previous studies have shown that mitochondrial DNA mutation rates are linked to lifespan in vertebrate species, but no study has explored this in invertebrates. To this end, we performed a Bayesian Phylogenetic Covariance model of evolution analysis using 12 mitochondrial protein-coding genes of 76 bivalve species. Three life history traits (maximum longevity, generation time and mean temperature tolerance) were tested against 1) synonymous substitution rates (dS), 2) conservative amino acid replacement rates (Kc) and 3) ratios of radical over conservative amino acid replacement rates (Kr/Kc). Our results confirm the already known correlation between longevity and generation time and show, for the first time in an invertebrate class, a significant negative correlation between dS and longevity. This correlation was not as strong when generation time and mean temperature tolerance variations were also considered in our model (marginal correlation), suggesting a confounding effect of these traits on the relationship between longevity and mtDNA substitution rate. By confirming the negative correlation between dS and longevity previously documented in birds and mammals, our results provide support for a general pattern in substitution rates.

11.
Genetics ; 218(2)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33764439

RESUMEN

We propose a method, SDpop, able to infer sex-linkage caused by recombination suppression typical of sex chromosomes. The method is based on the modeling of the allele and genotype frequencies of individuals of known sex in natural populations. It is implemented in a hierarchical probabilistic framework, accounting for different sources of error. It allows statistical testing for the presence or absence of sex chromosomes, and detection of sex-linked genes based on the posterior probabilities in the model. Furthermore, for gametologous sequences, the haplotype and level of nucleotide polymorphism of each copy can be inferred, as well as the divergence between them. We test the method using simulated data, as well as data from both a relatively recent and an old sex chromosome system (the plant Silene latifolia and humans) and show that, for most cases, robust predictions are obtained with 5 to 10 individuals per sex.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas Humanos/genética , Cromosomas de las Plantas/genética , Cromosomas Sexuales/genética , Genes de Plantas , Genes Ligados a X , Genes Ligados a Y , Haplotipos , Humanos , Modelos Genéticos , Polimorfismo Genético , Recombinación Genética , Silene/genética
13.
Commun Biol ; 4(1): 244, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627766

RESUMEN

Statistical phylogenetic analysis currently relies on complex, dedicated software packages, making it difficult for evolutionary biologists to explore new models and inference strategies. Recent years have seen more generic solutions based on probabilistic graphical models, but this formalism can only partly express phylogenetic problems. Here, we show that universal probabilistic programming languages (PPLs) solve the expressivity problem, while still supporting automated generation of efficient inference algorithms. To prove the latter point, we develop automated generation of sequential Monte Carlo (SMC) algorithms for PPL descriptions of arbitrary biological diversification (birth-death) models. SMC is a new inference strategy for these problems, supporting both parameter inference and efficient estimation of Bayes factors that are used in model testing. We take advantage of this in automatically generating SMC algorithms for several recent diversification models that have been difficult or impossible to tackle previously. Finally, applying these algorithms to 40 bird phylogenies, we show that models with slowing diversification, constant turnover and many small shifts generally explain the data best. Our work opens up several related problem domains to PPL approaches, and shows that few hurdles remain before these techniques can be effectively applied to the full range of phylogenetic models.


Asunto(s)
Inteligencia Artificial , Evolución Biológica , Bioestadística , Aves/fisiología , Filogenia , Programas Informáticos , Animales , Teorema de Bayes , Aves/genética , Interpretación Estadística de Datos , Modelos Estadísticos , Método de Montecarlo , Probabilidad , Lenguajes de Programación
14.
Mol Biol Evol ; 38(3): 1199-1208, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33045094

RESUMEN

In recent years, codon substitution models based on the mutation-selection principle have been extended for the purpose of detecting signatures of adaptive evolution in protein-coding genes. However, the approaches used to date have either focused on detecting global signals of adaptive regimes-across the entire gene-or on contexts where experimentally derived, site-specific amino acid fitness profiles are available. Here, we present a Bayesian site-heterogeneous mutation-selection framework for site-specific detection of adaptive substitution regimes given a protein-coding DNA alignment. We offer implementations, briefly present simulation results, and apply the approach on a few real data sets. Our analyses suggest that the new approach shows greater sensitivity than traditional methods. However, more study is required to assess the impact of potential model violations on the method, and gain a greater empirical sense its behavior on a broader range of real data sets. We propose an outline of such a research program.


Asunto(s)
Evolución Biológica , Técnicas Genéticas , Modelos Genéticos , Mutación , Selección Genética , Teorema de Bayes
15.
Genome Biol Evol ; 12(11): 2060-2073, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32986797

RESUMEN

Gall wasps (Hymenoptera: Cynipidae) induce complex galls on oaks, roses, and other plants, but the mechanism of gall induction is still unknown. Here, we take a comparative genomic approach to revealing the genetic basis of gall induction. We focus on Synergus itoensis, a species that induces galls inside oak acorns. Previous studies suggested that this species evolved the ability to initiate gall formation recently, as it is deeply nested within the genus Synergus, whose members are mostly inquilines that develop inside the galls of other species. We compared the genome of S. itoensis with that of three related Synergus inquilines to identify genomic changes associated with the origin of gall induction. We used a novel Bayesian selection analysis, which accounts for branch-specific and gene-specific selection effects, to search for signatures of selection in 7,600 single-copy orthologous genes shared by the four Synergus species. We found that the terminal branch leading to S. itoensis had more genes with a significantly elevated dN/dS ratio (positive signature genes) than the other terminal branches in the tree; the S. itoensis branch also had more genes with a significantly decreased dN/dS ratio. Gene set enrichment analysis showed that the positive signature gene set of S. itoensis, unlike those of the inquiline species, is enriched in several biological process Gene Ontology terms, the most prominent of which is "Ovarian Follicle Cell Development." Our results indicate that the origin of gall induction is associated with distinct genomic changes, and provide a good starting point for further characterization of the genes involved.


Asunto(s)
Evolución Biológica , Genoma de los Insectos , Tumores de Planta/parasitología , Selección Genética , Avispas/fisiología , Animales , Duplicación de Gen , Modelos Genéticos , Quercus/parasitología
16.
Mol Biol Evol ; 37(12): 3616-3631, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32877529

RESUMEN

Biochemical demands constrain the range of amino acids acceptable at specific sites resulting in across-site compositional heterogeneity of the amino acid replacement process. Phylogenetic models that disregard this heterogeneity are prone to systematic errors, which can lead to severe long-branch attraction artifacts. State-of-the-art models accounting for across-site compositional heterogeneity include the CAT model, which is computationally expensive, and empirical distribution mixture models estimated via maximum likelihood (C10-C60 models). Here, we present a new, scalable method EDCluster for finding empirical distribution mixture models involving a simple cluster analysis. The cluster analysis utilizes specific coordinate transformations which allow the detection of specialized amino acid distributions either from curated databases or from the alignment at hand. We apply EDCluster to the HOGENOM and HSSP databases in order to provide universal distribution mixture (UDM) models comprising up to 4,096 components. Detailed analyses of the UDM models demonstrate the removal of various long-branch attraction artifacts and improved performance compared with the C10-C60 models. Ready-to-use implementations of the UDM models are provided for three established software packages (IQ-TREE, Phylobayes, and RevBayes).


Asunto(s)
Sustitución de Aminoácidos , Técnicas Genéticas , Modelos Genéticos , Filogenia , Programas Informáticos , Análisis por Conglomerados
17.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180234, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31154974

RESUMEN

In evolutionary genomics, researchers have taken an interest in identifying substitutions that subtend convergent phenotypic adaptations. This is a difficult question that requires distinguishing foreground convergent substitutions that are involved in the convergent phenotype from background convergent substitutions. Those may be linked to other adaptations, may be neutral or may be the consequence of mutational biases. Furthermore, there is no generally accepted definition of convergent substitutions. Various methods that use different definitions have been proposed in the literature, resulting in different sets of candidate foreground convergent substitutions. In this article, we first describe the processes that can generate foreground convergent substitutions in coding sequences, separating adaptive from non-adaptive processes. Second, we review methods that have been proposed to detect foreground convergent substitutions in coding sequences and expose the assumptions that underlie them. Finally, we examine their power on simulations of convergent changes-including in the presence of a change in the efficacy of selection-and on empirical alignments. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Asunto(s)
Aminoácidos/genética , Evolución Molecular , Proteínas/genética , Aminoácidos/metabolismo , Animales , Genómica , Humanos , Modelos Genéticos , Filogenia , Proteínas/metabolismo
19.
Mol Biol Evol ; 35(11): 2819-2834, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30203003

RESUMEN

A key question in molecular evolutionary biology concerns the relative roles of mutation and selection in shaping genomic data. Moreover, features of mutation and selection are heterogeneous along the genome and over time. Mechanistic codon substitution models based on the mutation-selection framework are promising approaches to separating these effects. In practice, however, several complications arise, since accounting for such heterogeneities often implies handling models of high dimensionality (e.g., amino acid preferences), or leads to across-site dependence (e.g., CpG hypermutability), making the likelihood function intractable. Approximate Bayesian Computation (ABC) could address this latter issue. Here, we propose a new approach, named Conditional ABC (CABC), which combines the sampling efficiency of MCMC and the flexibility of ABC. To illustrate the potential of the CABC approach, we apply it to the study of mammalian CpG hypermutability based on a new mutation-level parameter implying dependence across adjacent sites, combined with site-specific purifying selection on amino-acids captured by a Dirichlet process. Our proof-of-concept of the CABC methodology opens new modeling perspectives. Our application of the method reveals a high level of heterogeneity of CpG hypermutability across loci and mild heterogeneity across taxonomic groups; and finally, we show that CpG hypermutability is an important evolutionary factor in rendering relative synonymous codon usage. All source code is available as a GitHub repository (https://github.com/Simonll/LikelihoodFreePhylogenetics.git).


Asunto(s)
Evolución Molecular , Técnicas Genéticas , Modelos Genéticos , Mutación , Selección Genética , Animales , Teorema de Bayes , Humanos , Mamíferos/genética , Método de Montecarlo
20.
Mol Biol Evol ; 35(12): 2900-2912, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247705

RESUMEN

The rate of molecular evolution varies widely among species. Life history traits (LHTs) have been proposed as a major driver of these variations. However, the relative contribution of each trait is poorly understood. Here, we test the influence of metabolic rate (MR), longevity, and generation time (GT) on the nuclear and mitochondrial synonymous substitution rates using a group of isopod species that have made multiple independent transitions to subterranean environments. Subterranean species have repeatedly evolved a lower MR, a longer lifespan and a longer GT. We assembled the nuclear transcriptomes and the mitochondrial genomes of 13 pairs of closely related isopods, each pair composed of one surface and one subterranean species. We found that subterranean species have a lower rate of nuclear synonymous substitution than surface species whereas the mitochondrial rate remained unchanged. We propose that this decoupling between nuclear and mitochondrial rates comes from different DNA replication processes in these two compartments. In isopods, the nuclear rate is probably tightly controlled by GT alone. In contrast, mitochondrial genomes appear to replicate and mutate at a rate independent of LHTs. These results are incongruent with previous studies, which were mostly devoted to vertebrates. We suggest that this incongruence can be explained by developmental differences between animal clades, with a quiescent period during female gametogenesis in mammals and birds which imposes a nuclear and mitochondrial rate coupling, as opposed to the continuous gametogenesis observed in most arthropods.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Isópodos/genética , Rasgos de la Historia de Vida , Animales , Replicación del ADN , Ecosistema , Transporte de Electrón , Isópodos/metabolismo , Isópodos/efectos de la radiación , Biosíntesis de Proteínas , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...