Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 433(5): 166793, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33388290

RESUMEN

Many proteins are composed of independently-folded domains connected by flexible linkers. The primary sequence and length of such linkers can set the effective concentration for the tethered domains, which impacts rates of association and enzyme activity. The length of such linkers can be sensitive to environmental conditions, which raises questions as to how studies in dilute buffer relate to the highly-crowded cellular environment. To examine the role of linkers in domain separation, we measured Fluorescent Protein-Fluorescence Resonance Energy Transfer (FP-FRET) for a series of tandem FPs that varied in the length of their interdomain linkers. We used discrete molecular dynamics to map the underlying conformational distribution, which revealed intramolecular contact states that we confirmed with single molecule FRET. Simulations found that attached FPs increased linker length and slowed conformational dynamics relative to the bare linkers. This makes the CLYs poor sensors of inherent linker properties. However, we also showed that FP-FRET in CLYs was sensitive to solvent quality and macromolecular crowding making them potent environmental sensors. Finally, we targeted the same proteins to the plasma membrane of living mammalian cells to measure FP-FRET in cellulo. The measured FP-FRET when tethered to the plasma membrane was the same as that in dilute buffer. While caveats remain regarding photophysics, this suggests that the supertertiary conformational ensemble of these CLY proteins may not be affected by this specific cellular environment.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Simulación de Dinámica Molecular , Proteínas Recombinantes de Fusión/química , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Células CHO , Cricetulus , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Polietilenglicoles/química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Imagen Individual de Molécula , Cloruro de Sodio/química , Urea/química
2.
RNA ; 22(7): 1065-75, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208315

RESUMEN

Protein kinase R (PKR) is a central component of the innate immunity antiviral pathway and is activated by dsRNA. PKR contains a C-terminal kinase domain and two tandem dsRNA binding domains. In the canonical activation model, binding of multiple PKR monomers to dsRNA enhances dimerization of the kinase domain, leading to enzymatic activation. A minimal dsRNA of 30 bp is required for activation. However, short (∼15 bp) stem-loop RNAs containing flanking single-stranded tails (ss-dsRNAs) are capable of activating PKR. Activation was reported to require a 5'-triphosphate. Here, we characterize the structural features of ss-dsRNAs that contribute to activation. We have designed a model ss-dsRNA containing 15-nt single-stranded tails and a 15-bp stem and made systematic truncations of the tail and stem regions. Autophosphorylation assays and analytical ultracentrifugation experiments were used to correlate activation and binding affinity. PKR activation requires both 5'- and 3'-single-stranded tails but the triphosphate is dispensable. Activation potency and binding affinity decrease as the ssRNA tails are truncated and activation is abolished in cases where the binding affinity is strongly reduced. These results indicate that the single-stranded regions bind to PKR and support a model where ss-dsRNA induced dimerization is required but not sufficient to activate the kinase. The length of the duplex regions in several natural RNA activators of PKR is below the minimum of 30 bp required for activation and similar interactions with single-stranded regions may contribute to PKR activation in these cases.


Asunto(s)
ARN Bicatenario/metabolismo , eIF-2 Quinasa/metabolismo , Dimerización , Activación Enzimática , ARN Bicatenario/química
3.
J Biol Chem ; 290(47): 28402-28415, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26416894

RESUMEN

Bacterial pore-forming toxins (PFTs) are structurally diverse pathogen-secreted proteins that form cell-damaging channels in the membranes of host cells. Most PFTs are released as water-soluble monomers that first oligomerize on the membrane before inserting a transmembrane channel. To modulate specificity and increase potency, many PFTs recognize specific cell surface receptors that increase the local toxin concentration on cell membranes, thereby facilitating channel formation. Vibrio cholerae cytolysin (VCC) is a toxin secreted by the human pathogen responsible for pandemic cholera disease and acts as a defensive agent against the host immune system. Although it has been shown that VCC utilizes specific glycan receptors on the cell surface, additional direct contacts with the membrane must also play a role in toxin binding. To better understand the nature of these interactions, we conducted a systematic investigation of the membrane-binding surface of VCC to identify additional membrane interactions important in cell targeting. Through cell-based assays on several human-derived cell lines, we show that VCC is unlikely to utilize high affinity protein receptors as do structurally similar toxins from Staphylococcus aureus. Next, we identified a number of specific amino acid residues that greatly diminish the VCC potency against cells and investigated the interplay between glycan binding and these direct lipid contacts. Finally, we used model membranes to parse the importance of these key residues in lipid and cholesterol binding. Our study provides a complete functional map of the VCC membrane-binding surface and insights into the integration of sugar, lipid, and cholesterol binding interactions.


Asunto(s)
Citotoxinas/metabolismo , Canales Iónicos/metabolismo , Polisacáridos/metabolismo , Vibrio cholerae/metabolismo , Secuencia de Aminoácidos , Línea Celular , Citotoxinas/química , Humanos , Neutrófilos/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie
4.
J Mol Biol ; 426(15): 2800-12, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-24862282

RESUMEN

Pore-forming toxins (PFTs) are a class of pathogen-secreted molecules that oligomerize to form transmembrane channels in cellular membranes. Determining the mechanism for how PFTs bind membranes is important in understanding their role in disease and for developing possible ways to block their action. Vibrio vulnificus, an aquatic pathogen responsible for severe food poisoning and septicemia in humans, secretes a PFT called V. vulnificus hemolysin (VVH), which contains a single C-terminal targeting domain predicted to resemble a ß-trefoil lectin fold. In order to understand the selectivity of the lectin for glycan motifs, we expressed the isolated VVH ß-trefoil domain and used glycan-chip screening to identify that VVH displays a preference for terminal galactosyl groups including N-acetyl-d-galactosamine and N-acetyl-d-lactosamine. The X-ray crystal structure of the VVH lectin domain solved to 2.0Å resolution reveals a heptameric ring arrangement similar to the oligomeric form of the related, but inactive, lectin from Vibrio cholerae cytolysin. Structures bound to glycerol, N-acetyl-d-galactosamine, and N-acetyl-d-lactosamine outline a common and versatile mode of recognition allowing VVH to target a wide variety of cell-surface ligands. Sequence analysis in light of our structural and functional data suggests that VVH may represent an earlier step in the evolution of Vibrio PFTs.


Asunto(s)
Acetilgalactosamina/metabolismo , Amino Azúcares/metabolismo , Membrana Celular/metabolismo , Evolución Molecular , Glicerol/metabolismo , Proteínas Hemolisinas/metabolismo , Lectinas/metabolismo , Vibrio vulnificus/metabolismo , Acetilgalactosamina/química , Secuencia de Aminoácidos , Amino Azúcares/química , Calorimetría , Cristalografía por Rayos X , Glicerol/química , Proteínas Hemolisinas/química , Humanos , Lectinas/química , Modelos Moleculares , Datos de Secuencia Molecular , Perforina/química , Filogenia , Homología de Secuencia de Aminoácido , Ultracentrifugación , Vibrio cholerae/metabolismo
5.
Structure ; 21(5): 753-65, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23562395

RESUMEN

Juxtaposed to either or both ends of the proteasome core particle (CP) can exist a 19S regulatory particle (RP) that recognizes and prepares ubiquitinated proteins for proteolysis. RP triphosphatase proteins (Rpt1-Rpt6), which are critical for substrate translocation into the CP, bind chaperone-like proteins (Hsm3, Nas2, Nas6, and Rpn14) implicated in RP assembly. We used NMR and other biophysical methods to reveal that S. cerevisiae Rpt6's C-terminal domain undergoes dynamic helix-coil transitions enabled by helix-destabilizing glycines within its two most C-terminal α helices. Rpn14 binds selectively to Rpt6's four-helix bundle, with surprisingly high affinity. Loss of Rpt6's partially unfolded state by glycine substitution (Rpt6 G³6°,³87A) disrupts holoenzyme formation in vitro, an effect enhanced by Rpn14. S. cerevisiae lacking Rpn14 and incorporating Rpt6 G³6°,³87A demonstrate hallmarks of defective proteasome assembly and synthetic growth defects. Rpt4 and Rpt5 exhibit similar exchange, suggesting that conserved structural heterogeneity among Rpt proteins may facilitate RP-CP assembly.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Portadoras/química , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Glicina/química , Modelos Moleculares , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Anal Biochem ; 437(2): 133-7, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23499970

RESUMEN

Sedimentation velocity analytical ultracentrifugation is a classical biophysical technique that is commonly used to analyze the size, shape, and interactions of biological macromolecules in solution. Fluorescence detection provides enhanced sensitivity and selectivity relative to the standard absorption and refractrometric detectors, but data acquisition is more complex and can be subject to interference from several photophysical effects. Here, we describe methods to configure sedimentation velocity measurements using fluorescence detection and evaluate the performance of the fluorescence optical system. The fluorescence detector output is linear over a concentration range of at least 1 to 500nM fluorescein and Alexa Fluor 488. At high concentrations, deviations from linearity can be attributed to the inner filter effect. A duplex DNA labeled with Alexa Fluor 488 was used as a standard to compare sedimentation coefficients obtained using fluorescence and absorbance detectors. Within error, the sedimentation coefficients agree. Thus, the fluorescence detector is capable of providing precise and accurate sedimentation velocity results that are consistent with measurements performed using conventional absorption optics, provided the data are collected at appropriate sample concentrations and the optics are configured correctly.


Asunto(s)
Fluorometría/métodos , Ultracentrifugación , Reproducibilidad de los Resultados , Factores de Tiempo
7.
PLoS One ; 7(12): e51829, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272173

RESUMEN

One of the most exciting recent developments in RNA biology has been the discovery of small non-coding RNAs that affect gene expression through the RNA interference (RNAi) mechanism. Two major classes of RNAs involved in RNAi are small interfering RNA (siRNA) and microRNA (miRNA). Dicer, an RNase III enzyme, plays a central role in the RNAi pathway by cleaving precursors of both of these classes of RNAs to form mature siRNAs and miRNAs, which are then loaded into the RNA-induced silencing complex (RISC). miRNA and siRNA precursors are quite structurally distinct; miRNA precursors are short, imperfect hairpins while siRNA precursors are long, perfect duplexes. Nonetheless, Dicer is able to process both. Dicer, like the majority of RNase III enzymes, contains a dsRNA binding domain (dsRBD), but the data are sparse on the exact role this domain plays in the mechanism of Dicer binding and cleavage. To further explore the role of human Dicer-dsRBD in the RNAi pathway, we determined its binding affinity to various RNAs modeling both miRNA and siRNA precursors. Our study shows that Dicer-dsRBD is an avid binder of dsRNA, but its binding is only minimally influenced by a single-stranded - double-stranded junction caused by large terminal loops observed in miRNA precursors. Thus, the Dicer-dsRBD contributes directly to substrate binding but not to the mechanism of differentiating between pre-miRNA and pre-siRNA. In addition, NMR spin relaxation and MD simulations provide an overview of the role that dynamics contribute to the binding mechanism. We compare this current study with our previous studies of the dsRBDs from Drosha and DGCR8 to give a dynamic profile of dsRBDs in their apo-state and a mechanistic view of dsRNA binding by dsRBDs in general.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
8.
J Mol Biol ; 413(5): 973-84, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21978664

RESUMEN

Protein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway. PKR is activated to undergo autophosphorylation upon binding to double-stranded RNAs or RNAs that contain duplex regions. Activated PKR phosphorylates the α subunit of eukaryotic initiation factor 2, thereby inhibiting protein synthesis. PKR is also activated by heparin, a highly sulfated glycosaminoglycan. We have used biophysical methods to define the mechanism of PKR activation by heparin. Heparins as short as hexasaccharide bind strongly to PKR and activate autophosphorylation. In contrast to double-stranded RNA, heparin activates PKR by binding to the kinase domain. Analytical ultracentrifugation measurements support a thermodynamic linkage model where heparin binding allosterically enhances PKR dimerization, thereby activating the kinase. These results indicate that PKR can be activated by small molecules and represents a viable target for the development of novel antiviral agents.


Asunto(s)
Activación Enzimática/efectos de los fármacos , Heparina/farmacología , eIF-2 Quinasa/química , eIF-2 Quinasa/metabolismo , Sitios de Unión , Humanos , Modelos Químicos , Fosforilación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , ARN Bicatenario/genética
9.
Mol Cell ; 35(3): 280-90, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19683493

RESUMEN

Degradation by the proteasome typically requires substrate ubiquitination. Two ubiquitin receptors exist in the proteasome, S5a/Rpn10 and Rpn13. Whereas Rpn13 has only one ubiquitin-binding surface, S5a binds ubiquitin with two independent ubiquitin-interacting motifs (UIMs). Here, we use nuclear magnetic resonance (NMR) and analytical ultracentrifugation to define at atomic level resolution how S5a binds K48-linked diubiquitin, in which K48 of one ubiquitin subunit (the "proximal" one) is covalently bonded to G76 of the other (the "distal" subunit). We demonstrate that S5a's UIMs bind the two subunits simultaneously with a preference for UIM2 binding to the proximal subunit while UIM1 binds to the distal one. In addition, NMR experiments reveal that Rpn13 and S5a bind K48-linked diubiquitin simultaneously with subunit specificity, and a model structure of S5a and Rpn13 bound to K48-linked polyubiquitin is provided. Altogether, our data demonstrate that S5a is highly adaptive and cooperative toward binding ubiquitin chains.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Complejo de la Endopetidasa Proteasomal/química , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas de Unión al ARN , Ubiquitina/química , Ubiquitinación , Ultracentrifugación
10.
J Biol Chem ; 283(6): 3338-3348, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18065420

RESUMEN

Mcm10 plays a key role in initiation and elongation of eukaryotic chromosomal DNA replication. As a first step to better understand the structure and function of vertebrate Mcm10, we have determined the structural architecture of Xenopus laevis Mcm10 (xMcm10) and characterized each domain biochemically. Limited proteolytic digestion of the full-length protein revealed N-terminal-, internal (ID)-, and C-terminal (CTD)-structured domains. Analytical ultracentrifugation revealed that xMcm10 self-associates and that the N-terminal domain forms homodimeric assemblies. DNA binding activity of xMcm10 was mapped to the ID and CTD, each of which binds to single- and double-stranded DNA with low micromolar affinity. The structural integrity of xMcm10-ID and CTD is dependent on the presence of bound zinc, which was experimentally verified by atomic absorption spectroscopy and proteolysis protection assays. The ID and CTD also bind independently to the N-terminal 323 residues of the p180 subunit of DNA polymerase alpha-primase. We propose that the modularity of the protein architecture, with discrete domains for dimerization and for binding to DNA and DNA polymerase alpha-primase, provides an effective means for coordinating the biochemical activities of Mcm10 within the replisome.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/química , Secuencia de Aminoácidos , Animales , Anisotropía , Proteínas de Ciclo Celular/química , Replicación del ADN , Proteínas de Unión al ADN/fisiología , ADN Polimerasa Dirigida por ADN/química , Ácido Edético/farmacología , Humanos , Proteínas de Mantenimiento de Minicromosoma , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia/métodos , Xenopus laevis
11.
Methods Cell Biol ; 84: 143-79, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17964931

RESUMEN

Analytical ultracentrifugation (AUC) is a versatile and powerful method for the quantitative analysis of macromolecules in solution. AUC has broad applications for the study of biomacromolecules in a wide range of solvents and over a wide range of solute concentrations. Three optical systems are available for the analytical ultracentrifuge (absorbance, interference, and fluorescence) that permit precise and selective observation of sedimentation in real time. In particular, the fluorescence system provides a new way to extend the scope of AUC to probe the behavior of biological molecules in complex mixtures and at high solute concentrations. In sedimentation velocity (SV), the movement of solutes in high centrifugal fields is interpreted using hydrodynamic theory to define the size, shape, and interactions of macromolecules. Sedimentation equilibrium (SE) is a thermodynamic method where equilibrium concentration gradients at lower centrifugal fields are analyzed to define molecule mass, assembly stoichiometry, association constants, and solution nonideality. Using specialized sample cells and modern analysis software, researchers can use SV to determine the homogeneity of a sample and define whether it undergoes concentration-dependent association reactions. Subsequently, more thorough model-dependent analysis of velocity and equilibrium experiments can provide a detailed picture of the nature of the species present in solution and their interactions.


Asunto(s)
Ultracentrifugación/instrumentación , Ultracentrifugación/métodos , Óptica y Fotónica , Soluciones
12.
Proc Natl Acad Sci U S A ; 104(25): 10583-8, 2007 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-17563375

RESUMEN

The signaling lymphocyte activation molecule (SLAM) family includes homophilic and heterophilic receptors that modulate both adaptive and innate immune responses. These receptors share a common ectodomain organization: a membrane-proximal immunoglobulin constant domain and a membrane-distal immunoglobulin variable domain that is responsible for ligand recognition. CD84 is a homophilic family member that enhances IFN-gamma secretion in activated T cells. Our solution studies revealed that CD84 strongly self-associates with a K(d) in the submicromolar range. These data, in combination with previous reports, demonstrate that the SLAM family homophilic affinities span at least three orders of magnitude and suggest that differences in the affinities may contribute to the distinct signaling behavior exhibited by the individual family members. The 2.0 A crystal structure of the human CD84 immunoglobulin variable domain revealed an orthogonal homophilic dimer with high similarity to the recently reported homophilic dimer of the SLAM family member NTB-A. Structural and chemical differences in the homophilic interfaces provide a mechanism to prevent the formation of undesired heterodimers among the SLAM family homophilic receptors. These structural data also suggest that, like NTB-A, all SLAM family homophilic dimers adopt a highly kinked organization spanning an end-to-end distance of approximately 140 A. This common molecular dimension provides an opportunity for all two-domain SLAM family receptors to colocalize within the immunological synapse and bridge the T cell and antigen-presenting cell.


Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Antígenos CD/genética , Secuencia Conservada , Cristalografía por Rayos X , Dimerización , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Ultracentrifugación , Difracción de Rayos X
13.
J Mol Biol ; 369(1): 168-76, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17408689

RESUMEN

Ubiquitin receptors connect substrate ubiquitylation to proteasomal degradation. HHR23a binds proteasome subunit 5a (S5a) through a surface that also binds ubiquitin. We report that UIM2 of S5a binds preferentially to hHR23a over polyubiquitin, and we provide a model for the ternary complex that we expect represents one of the mechanisms used by the proteasome to capture ubiquitylated substrates. Furthermore, we demonstrate that hHR23a is surprisingly adept at sequestering the ubiquitin moieties of a polyubiquitin chain, and provide evidence that it and the ubiquitylated substrate are committed to each other after binding.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Cromatografía en Gel , Proteínas de Unión al ADN/química , Humanos , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN , Enzimas Activadoras de Ubiquitina/metabolismo
14.
Immunity ; 26(3): 311-21, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17363302

RESUMEN

The T cell immunoglobulin mucin (Tim) family of receptors regulates effector CD4(+) T cell functions and is implicated in autoimmune and allergic diseases. Tim-3 induces immunological tolerance, and engagement of the Tim-3 immunoglobulin variable (IgV) domain by galectin-9 is important for appropriate termination of T helper 1-immune responses. The 2 A crystal structure of the Tim-3 IgV domain demonstrated that four cysteines, which are invariant within the Tim family, form two noncanonical disulfide bonds, resulting in a surface not present in other immunoglobulin superfamily members. Biochemical and biophysical studies demonstrated that this unique structural feature mediates a previously unidentified galectin-9-independent binding process and suggested that this structural feature is conserved within the entire Tim family. The current work provided a graphic example of the relationship between sequence, structure, and function and suggested that the interplay between multiple Tim-3-binding activities contributes to the regulated assembly of signaling complexes required for effective Th1-mediated immunity.


Asunto(s)
Galectinas/química , Receptores Virales/química , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Ligandos , Ratones , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Receptores Virales/genética
15.
Immunity ; 25(4): 559-70, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17045824

RESUMEN

The signaling lymphocytic activation molecule (SLAM) family includes homophilic and heterophilic receptors that regulate both innate and adaptive immunity. The ectodomains of most SLAM family members are composed of an N-terminal IgV domain and a C-terminal IgC2 domain. NK-T-B-antigen (NTB-A) is a homophilic receptor that stimulates cytotoxicity in natural killer (NK) cells, regulates bactericidal activities in neutrophils, and potentiates T helper 2 (Th2) responses. The 3.0 A crystal structure of the complete NTB-A ectodomain revealed a rod-like monomer that self-associates to form a highly kinked dimer spanning an end-to-end distance of approximately 100 A. The NTB-A homophilic and CD2-CD58 heterophilic dimers show overall structural similarities but differ in detailed organization and physicochemical properties of their respective interfaces. The NTB-A structure suggests a mechanism responsible for binding specificity within the SLAM family and imposes physical constraints relevant to the colocalization of SLAM-family proteins with other signaling molecules in the immunological synapse.


Asunto(s)
Antígenos CD/química , Receptores de Superficie Celular/química , Secuencia de Aminoácidos , Antígenos CD/inmunología , Antígenos CD2/química , Antígenos CD58/química , Cristalografía por Rayos X , Dimerización , Humanos , Activación de Linfocitos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores de Superficie Celular/inmunología , Transducción de Señal , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA