Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684801

RESUMEN

Halogenation often improves the bioactive properties of natural products and is used in pharmaceutical research for the generation of new potential drug leads. High regio- and stereospecificity, simple reaction conditions and straightforward downstream processing are the main advantages of halogenation using enzymatic biocatalysts compared to chemical synthetic approaches. The identification of new promiscuous halogenases for the modification of various natural products is of great interest in modern drug discovery. In this paper, we report the identification of a new promiscuous FAD-dependent halogenase, DklH, from Frankia alni ACN14a. The identified halogenase readily modifies various flavonoid compounds, including those with well-studied biological activities. This halogenase has been demonstrated to modify not only flavones and isoflavones, but also flavonols, flavanones and flavanonols. The structural requirements for DklH substrate recognition were determined using a feeding approach. The homology model of DklH and the mechanism of substrate recognition are also proposed in this paper.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavonoides/metabolismo , Halogenación , Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Descubrimiento de Drogas , Flavonoides/química , Frankia/enzimología , Frankia/genética , Genes Bacterianos , Simulación del Acoplamiento Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
2.
Microorganisms ; 9(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34442719

RESUMEN

The intriguing structural complexity of molecules produced by natural organisms is uncontested. Natural scaffolds serve as an important basis for the development of molecules with broad applications, e.g., therapeutics or agrochemicals. Research in recent decades has demonstrated that by means of classic metabolite extraction from microbes only a small portion of natural products can be accessed. The use of genome mining and heterologous expression approaches represents a promising way to discover new natural compounds. In this paper we report the discovery of a novel cyclic pentapeptide called bonsecamin through the heterologous expression of a cryptic NRPS gene cluster from Streptomyces albus ssp. chlorinus NRRL B-24108 in Streptomyces albus Del14. The new compound was successfully isolated and structurally characterized using NMR. The minimal set of genes required for bonsecamin production was determined through bioinformatic analysis and gene deletion experiments. A biosynthetic route leading to the production of bonsecamin is proposed in this paper.

3.
Microorganisms ; 8(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207845

RESUMEN

Since the 1950s, natural products of bacterial origin were systematically developed to be used as drugs with a wide range of medical applications. The available treatment options for many diseases are still not satisfying, wherefore, the discovery of new structures has not lost any of its importance. Beyond the great variety of already isolated and characterized metabolites, Streptomycetes still harbor uninvestigated gene clusters whose products can be accessed using heterologous expression in host organisms. This works presents the discovery of a set of structurally novel secondary metabolites, dudomycins A to D, through the expression of a cryptic NRPS cluster from Streptomyces albus ssp. Chlorinus NRRL B-24108 in the heterologous host strain Streptomyces albus Del14. A minimal set of genes, required for the production of dudomycins, was defined through gene inactivation experiments. This paper also proposes a model for dudomycin biosynthesis.

4.
Molecules ; 25(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050154

RESUMEN

Natural products are a valuable source of biologically active compounds with potential applications in medicine and agriculture. Unprecedented scaffold diversity of natural products and biocatalysts from their biosynthetic pathways are of fundamental importance. Heterologous expression and refactoring of natural product biosynthetic pathways are generally regarded as a promising approach to discover new secondary metabolites of microbial origin. Here, we present the identification of a new group of alkylresorcinols after transcriptional activation and heterologous expression of the type III polyketide synthase of Micromonospora endolithica. The most abundant compounds loseolamycins A1 and A2 have been purified and their structures were elucidated by NMR. Loseolamycins contain an unusual branched hydroxylated aliphatic chain which is provided by the host metabolism and is incorporated as a starter fatty acid unit. The isolated loseolamycins show activity against gram-positive bacteria and inhibit the growth of the monocot weed Agrostis stolonifera in a germination assay. The biosynthetic pathway leading to the production of loseolamycins is proposed in this paper.


Asunto(s)
Micromonospora/enzimología , Sintasas Poliquetidas/metabolismo , Streptomyces/metabolismo , Regulación Bacteriana de la Expresión Génica , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA