Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurooncol Pract ; 11(2): 142-149, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38496910

RESUMEN

Background: One targeted treatment option for isocitrate dehydrogenase (IDH)-wild-type glioblastoma focuses on tumors with fibroblast growth factor receptor 3::transforming acidic coiled-coil-containing protein 3 (FGFR3::TACC3) fusions. FGFR3::TACC3 fusion detection can be challenging, as targeted RNA next-generation sequencing (NGS) is not routinely performed, and immunohistochemistry is an imperfect surrogate marker. Fusion status can be determined using reverse transcription polymerase chain reaction (RT-PCR) on fresh frozen (FF) material, but sometimes only formalin-fixed, paraffin-embedded (FFPE) tissue is available. Aim: To develop an RT-PCR assay to determine FGFR3::TACC3 status in FFPE glioblastoma samples. Methods: Twelve tissue microarrays with 353 historical glioblastoma samples were immunohistochemically stained for FGFR3. Samples with overexpression of FGFR3 (n = 13) were subjected to FGFR3::TACC3 RT-PCR on FFPE, using 5 primer sets for the detection of 5 common fusion variants. Fusion-negative samples were additionally analyzed with NGS (n = 6), FGFR3 Fluorescence In Situ Hybridization (n = 6), and RNA sequencing (n = 5). Results: Using RT-PCR on FFPE material of the 13 samples with FGFR3 overexpression, we detected an FGFR3::TACC3 fusion in 7 samples, covering 3 different fusion variants. For 5 of these FF was available, and the presence of the fusion was confirmed through RT-PCR on FF. With RNA sequencing, 1 additional sample was found to harbor an FGFR3::TACC3 fusion (variant not covered by current RT-PCR for FFPE). The frequency of FGFR3::TACC3 fusion in this cohort was 9/353 (2.5%). Conclusions: RT-PCR for FGFR3::TACC3 fusions can successfully be performed on FFPE material, with a specificity of 100% and (due to limited primer sets) a sensitivity of 83.3%. This assay allows for the identification of potential targeted treatment options when only formalin-fixed tissue is available.

2.
Cancer Cell ; 42(3): 358-377.e8, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38215747

RESUMEN

The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteogenómica , Animales , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogénicas B-raf , Proteómica , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Modelos Animales de Enfermedad , Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancer Res ; 84(5): 741-756, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38117484

RESUMEN

Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE: Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Humanos , Neoplasias Encefálicas/patología , Epigénesis Genética , Epigenómica , Glioma/patología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación , Recurrencia Local de Neoplasia/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA