Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(11): 763, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996430

RESUMEN

The transcription factor MYB plays a pivotal role in haematopoietic homoeostasis and its aberrant expression is involved in the genesis and maintenance of acute myeloid leukaemia (AML). We have previously demonstrated that not all AML subtypes display the same dependency on MYB expression and that such variability is dictated by the nature of the driver mutation. However, whether this difference in MYB dependency is a general trend in AML remains to be further elucidated. Here, we investigate the role of MYB in human leukaemia by performing siRNA-mediated knock-down in cell line models of AML with different driver lesions. We show that the characteristic reduction in proliferation and the concomitant induction of myeloid differentiation that is observed in MLL-rearranged and t(8;21) leukaemias upon MYB suppression is not seen in AML cells with a complex karyotype. Transcriptome analyses revealed that MYB ablation produces consensual increase of MAFB expression in MYB-dependent cells and, interestingly, the ectopic expression of MAFB could phenocopy the effect of MYB suppression. Accordingly, in silico stratification analyses of molecular data from AML patients revealed a reciprocal relationship between MYB and MAFB expression, highlighting a novel biological interconnection between these two factors in AML and supporting new rationales of MAFB targeting in MLL-rearranged leukaemias.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Línea Celular , Leucemia Mieloide Aguda/metabolismo , Factor de Transcripción MafB/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Fenotipo , ARN Interferente Pequeño
2.
FEBS Lett ; 587(18): 3058-62, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23912081

RESUMEN

Hepatitis B x antigen up-regulates the liver expression of URG7 that contributes to sustain chronic virus infection and to increase the risk for hepatocellular carcinoma by its anti-apoptotic activity. We have investigated the subcellular localization of URG7 expressed in HepG2 cells and determined its membrane topology by glycosylation mapping in vitro. The results demonstrate that URG7 is N-glycosylated and located to the endoplasmic reticulum membrane with an Nlumen-Ccytosol orientation. The results imply that the anti-apoptotic effect of URG7 could arise from the C-terminal cytosolic tail binding a pro-apoptotic signaling factor and retaining it to the endoplasmic reticulum membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Antígenos de la Hepatitis B/metabolismo , Virus de la Hepatitis B/química , Membranas Intracelulares/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Apoptosis , Retículo Endoplásmico/genética , Retículo Endoplásmico/virología , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Glicosilación , Células Hep G2 , Antígenos de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Interacciones Huésped-Patógeno , Humanos , Membranas Intracelulares/virología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Unión Proteica , Transducción de Señal
3.
Biochem J ; 379(Pt 1): 183-90, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-14674884

RESUMEN

The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene.


Asunto(s)
Proteínas de Unión al Calcio/genética , Genes , Proteínas de Transporte de Membrana/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Química Encefálica , Púrpura de Bromocresol/farmacología , Células CHO , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/aislamiento & purificación , Proteínas de Unión al Calcio/fisiología , Clonación Molecular , Cricetinae , Citosol/metabolismo , ADN Complementario/genética , Escherichia coli , Etiquetas de Secuencia Expresada , Humanos , Taninos Hidrolizables/farmacología , Moduladores del Transporte de Membrana , Proteínas de Transporte de Membrana/antagonistas & inhibidores , Proteínas de Transporte de Membrana/aislamiento & purificación , Proteínas de Transporte de Membrana/fisiología , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/aislamiento & purificación , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/aislamiento & purificación , Especificidad de Órganos , Filogenia , ARN Mensajero/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
4.
EMBO J ; 22(22): 5975-82, 2003 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-14609944

RESUMEN

The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier protein family, most of which have not yet been functionally identified. Here the identification of the mitochondrial carrier for S-adenosylmethionine (SAM) Sam5p is described. The corresponding gene has been overexpressed in bacteria and the protein has been reconstituted into phospholipid vesicles and identified by its transport properties. In confirmation of its identity, (i) the Sam5p-GFP protein was found to be targeted to mitochondria; (ii) the cells lacking the gene for this carrier showed auxotrophy for biotin (which is synthesized in the mitochondria by the SAM-requiring Bio2p) on fermentable carbon sources and a petite phenotype on non-fermentable substrates; and (iii) both phenotypes of the knock-out mutant were overcome by expressing the cytosolic SAM synthetase (Sam1p) inside the mitochondria.


Asunto(s)
Mitocondrias/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Biotina/metabolismo , Genes Reporteros , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Mitocondriales , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
EMBO J ; 20(18): 5060-9, 2001 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-11566871

RESUMEN

The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca(2+)-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H(+). Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca(2+) on the external side of the inner mitochondrial membrane, where the Ca(2+)-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca(2+) through a mechanism independent of Ca(2+) entry into mitochondria, and suggest a novel mechanism of Ca(2+) regulation of the aspartate/malate shuttle.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos , Antiportadores , Proteínas de Unión al Calcio/fisiología , Calcio/farmacología , Proteínas Portadoras/fisiología , Citrulinemia/etiología , Proteínas de Transporte de Membrana , Mitocondrias/metabolismo , Proteínas Mitocondriales , Transportadores de Anión Orgánico , Proteínas de Unión al Calcio/genética , Proteínas Portadoras/genética , Línea Celular , Escherichia coli/genética , Humanos , Cinética , Proteínas de Transporte de Membrana Mitocondrial , Modelos Químicos , Proteolípidos/metabolismo , Transfección
6.
Biochim Biophys Acta ; 1459(2-3): 363-9, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11004452

RESUMEN

The genome of Saccharomyces cerevisiae encodes 35 putative members of the mitochondrial carrier family. Known members of this family transport substrates and products across the inner membranes of mitochondria. We are attempting to identify the functions of the yeast mitochondrial transporters via high-yield expression in Escherichia coli and/or S. cerevisiae, purification and reconstitution of their protein products into liposomes, where their transport properties are investigated. With this strategy, we have already identified the functions of seven S. cerevisiae gene products, whose structural and functional properties assigned them to the mitochondrial carrier family. The functional information obtained in the reconstituted system and the use of knock-out yeast strains can be usefully exploited for the investigation of the physiological role of individual transporters. Furthermore, the yeast carrier sequences can be used to identify the orthologous proteins in other organisms, including man.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos , Animales , Antiportadores/química , Antiportadores/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Carnitina Aciltransferasas/química , Carnitina Aciltransferasas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Clonación Molecular , Transportadores de Ácidos Dicarboxílicos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética
7.
FEBS Lett ; 462(3): 472-6, 1999 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-10622748

RESUMEN

The mitochondrial carrier protein for carnitine has been identified in Saccharomyces cerevisiae. It is encoded by the gene CRC1 and is a member of the family of mitochondrial transport proteins. The protein has been over-expressed with a C-terminal His-tag in S. cerevisiae and isolated from mitochondria by nickel affinity chromatography. The purified protein has been reconstituted into proteoliposomes and its transport characteristics established. It transports carnitine, acetylcarnitine, propionylcarnitine and to a much lower extent medium- and long-chain acylcarnitines.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Carnitina/metabolismo , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Acetilcarnitina/metabolismo , Carnitina/análogos & derivados , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Cromatografía de Afinidad , Cinética , Proteínas Mitocondriales , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Factores de Tiempo
8.
J Biol Chem ; 273(38): 24754-9, 1998 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-9733776

RESUMEN

The dicarboxylate carrier (DIC) belongs to a family of transport proteins found in the inner mitochondrial membranes. The biochemical properties of the mammalian protein have been characterized, but the protein is not abundant. It is difficult to purify and had not been sequenced. We have used the sequence of the distantly related yeast DIC to identify a related protein encoded in the genome of Caenorhabditis elegans. Then, related murine expressed sequence tags were identified with the worm sequence, and the murine sequence was used to isolate the cDNA for the rat homolog. The sequences of the worm and rat proteins have features characteristic of the family of mitochondrial transport proteins. Both proteins were expressed in bacteria and reconstituted into phospholipid vesicles where their transport characteristics closely resembled those of whole rat mitochondria and of the rat DIC reconstituted into vesicles. As expected from the role of the DIC in gluconeogenesis and ureogenesis, its transcripts were detected in rat liver and kidney, but unexpectedly, they were also detected in rat heart and brain tissues where the protein may fulfill other roles, possibly in supplying substrates to the Krebs cycle.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Membranas Intracelulares/metabolismo , Mitocondrias Hepáticas/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/biosíntesis , Clonación Molecular , Transportadores de Ácidos Dicarboxílicos , Ácidos Dicarboxílicos/metabolismo , Cinética , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
9.
FEBS Lett ; 417(1): 114-8, 1997 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-9395087

RESUMEN

The protein encoded by the ACR1 gene in Saccharomyces cerevisiae belongs to a family of 35 related membrane proteins that are encoded in the fungal genome. Some of them are known to transport various substrates and products across the inner membranes of mitochondria, but the functions of 28 members of the family are unknown. The yeast ACR1 gene was introduced into Escherichia coli on an expression plasmid. The protein was over-produced as inclusion bodies, which were purified and solubilised in the presence of sarkosyl. The solubilised protein was reconstituted into liposomes and shown to transport fumarate and succinate. Its physiological role in S. cerevisiae is probably to transport cytoplasmic succinate, derived from isocitrate by the action of isocitrate lyase in the cytosol, into the mitochondrial matrix in exchange for fumarate. This exchange activity and the subsequent conversion of fumarate to oxaloacetate in the cytosol would be essential for the growth of S. cerevisiae on ethanol or acetate as the sole carbon source.


Asunto(s)
Acetatos/metabolismo , Proteínas Portadoras/metabolismo , Etanol/metabolismo , Fumaratos/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Proteínas Portadoras/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Vectores Genéticos , Cinética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...