Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 193: 270-277, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29141235

RESUMEN

Elimination of dangerous toxic and hydrophobic chlorinated aromatic compounds, mainly PCBs from the environment, is one of the most important aims of the environmental biotechnologies. In this work, biodegradation of an industrial mixture of PCBs (Delor 103, equivalent to Aroclor 1242) was performed using bacterial consortia composed of four bacterial strains isolated from the historically PCB-contaminated sediments and characterized as Achromobacter xylosoxidans, Stenotrophomonas maltophilia, Ochrobactrum anthropi and Rhodococcus ruber. The objective of this research was to determine the biodegradation ability of the individual strains and artificially prepared consortia composed of two or three bacterial strains mentioned above. Based on the growth parameters, six consortia were constructed and inoculated into the historically contaminated sediment samples collected in the efflux canal of Chemko Strázske plant - the former producer of the industrial mixtures of PCBs. The efficacy of the biotreatment, namely bioaugmentation, was evaluated by determination of ecotoxicity of treated and non-treated sediments. The most effective consortia were those containing the strain R. ruber. In the combination with A. xylosoxidans, the biodegradation of the sum of the indicator congeners was 85% and in the combination with S. maltophilia nearly 80%, with inocula applied in the ratio 1:1 in both cases. Consortium containing the strain R. ruber and S. maltophilia showed pronounced degradation of the highly chlorinated PCB congeners. Among the consortia composed of three bacterial strains, only that consisting of O. anthropi, R. ruber and A. xylosoxidans showed higher biodegradation (73%). All created consortia significally reduced the toxicity of the contaminated sediment.


Asunto(s)
Biodegradación Ambiental , Consorcios Microbianos , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Bifenilos Policlorados/análisis , Rhodococcus/metabolismo , Ríos/química , Ríos/microbiología , Stenotrophomonas maltophilia/metabolismo
2.
J Hazard Mater ; 321: 54-61, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27607933

RESUMEN

Polychlorinated biphenyls (PCBs) produced in Slovakia as a commercial mixture Delor 103 cause the main contamination of sediment, water and fish in the eastern part of Slovakia. Delor 103 is a mixture of 40% PCB congeners, nine of them: PCB 8 (2,4'-dichlorobiphenyl), PCB 28 (2,4,4'-trichlorobiphenyl), PCB 52 (2,2',5,5'-tetrachlorobiphenyl), PCB 101 (2,2',4,5,5'-pentachlorobiphenyl), PCB 118 (2,3',4,4',5-pentachlorobiphenyl), PCB 138 (2,2',3,4,4',5'-hexachlorobiphenyl), PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl), PCB 180 (2,2',3,4,4',5,5'-heptachlorobiphenyl), and PCB 203 (2,2',3,4,4',5,5',6-octachlorobiphenyl), were monitored for their removal by ozonation and biodegradation using Achromobacter xylosoxidans. Ozonation improved the removal of PCB 52, 118, 153, 138, 180, and 203 using biological method with A. xylosoxidans. Degradation of 55% of the total amount of nine selected PCB congeners was achieved by the biological method with A. xylosoxidans, while 86% of the total amount of the nine selected PCB congeners were removed by the ozonation method; using a combination of biological and chemical methods, ozonation and A. xylosoxidans, showed a 94% removal efficiency of the selected PCB congeners present in mixture Delor 103.


Asunto(s)
Achromobacter denitrificans/crecimiento & desarrollo , Ozono/química , Bifenilos Policlorados/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA