Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13956, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886397

RESUMEN

Co-pyrolysis of chicken manure with tree bark was investigated to mitigate salinity and potentially toxic element (PTE) concentrations of chicken manure-derived biochar. The effect of tree bark addition (0, 25, 50, 75 and 100 wt%) on the biochar composition, surface functional groups, PTEs and polycyclic aromatic hydrocarbons (PAH) concentration in the biochar was evaluated. Biochar-induced toxicity was assessed using an in-house plant growth assay with Arabidopsis thaliana. This study shows that PTE concentrations can be controlled through co-pyrolysis. More than 50 wt% of tree bark must be added to chicken manure to reduce the concentrations below the European Biochar Certificate-AGRO (EBC-AGRO) threshold. However, the amount of PAH does not show a trend with tree bark addition. Furthermore, co-pyrolysis biochar promotes plant growth at different application concentrations, whereas pure application of 100 wt% tree bark or chicken manure biochar results in decreased growth compared to the reference. In addition, increased plant stress was observed for 100 wt% chicken manure biochar. These data indicate that co-pyrolysis of chicken manure and tree bark produces EBC-AGRO-compliant biochar with the potential to stimulate plant growth. Further studies need to assess the effect of these biochars in long-term growth experiments.


Asunto(s)
Arabidopsis , Carbón Orgánico , Pollos , Estiércol , Corteza de la Planta , Pirólisis , Animales , Estiércol/análisis , Corteza de la Planta/química , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Hidrocarburos Policíclicos Aromáticos/toxicidad
2.
Sci Total Environ ; 915: 170124, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232844

RESUMEN

Research attention is growing for biochar as amendment for anaerobic digestion (AD), as it may improve both the AD process and digestate properties. In this study, two biochars (from insect frass or the woody fraction of green waste, both pyrolyzed at 450 °C) were added (5 % w/w) during semi-continuous AD of organic kitchen waste and chicken manure. Biochar was mixed either during the AD process or to the digestate post-treatment. The impact of biochar addition on the AD process, NH3 and greenhouse gas emissions, as well as C and N mineralization following soil application, was examined. Biochar did not affect the biogas yield, but did lead to a reduction in NH3 levels in the biogas and NH4+-N sorption onto the biochars, reducing the risk of AD inhibition. N sorbed as NH4+-N onto the biochar was more available for mineralization than N sorbed as NH3. N sorption on biochar-amended digestates did not result in trade-offs when these digestates were applied to soil: the sorbed N was not released as NH3 or N2O after soil application and was not released as mineral N in either the short or medium term. The C-rich biochars increased the OC content of the digestate, which enhanced its value as soil improver. Additionally, mixing biochar with digestate decreased the soil CO2 emissions up to 33 % when it was added after AD; no priming effects were observed. These findings highlight the potential benefits of incorporating biochar into AD systems and the subsequent application of biochar-amended digestate in agricultural practices.


Asunto(s)
Biocombustibles , Carbón Orgánico , Anaerobiosis , Suelo , Fertilizantes/análisis , Óxido Nitroso/análisis
3.
Waste Manag ; 168: 376-385, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348380

RESUMEN

Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 - 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments.


Asunto(s)
Cadmio , Suelo , Animales , Estiércol , Carbón Orgánico , Adsorción , Pollos , Concentración de Iones de Hidrógeno
4.
Waste Manag ; 167: 39-45, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244007

RESUMEN

Cattle slurry storage is a major source of gaseous N emissions. The aim of this study was to evaluate the effects of biochar, clinoptilolite and elemental sulfur (S°) on (1) NH3 and greenhouse gas emissions during storage of cattle slurry and (2) after soil application of the enriched solid fractions; and (3) on the agronomic quality of the solid and liquid fractions. In the first phase, biochar was added to the slurry (10 g L-1); subsequently in the second phase, clinoptilolite (50 g L-1), S° (1 g L-1) and 40 g L-1 extra biochar were added. Gaseous emissions were monitored by a semi-continuous multi-gas analyzer and the agronomic quality of solid and liquid fractions was assessed after separation. The enriched solid fractions were applied to soil to study the effects on gaseous emissions, N and C mineralization. Amendment of biochar reduced NH3 emissions during cattle slurry storage by 12% during the first 7 days. Extra amendment of biochar, clinoptilolite and S° in combination with biochar resulted in a decrease of NH3 emissions of approximately 20%. The N sorbed from the slurry by the biochar was not released as NH3 during soil application of the solid fractions and was not released as mineral N in the short term (within 28 days). A short-term positive priming effect of biochar on the C mineralization of manure and biochar-manure mixture applied to soil was observed. The biochar-enriched solid fractions contained more C, total and organic N and water-available P with a slow release.


Asunto(s)
Suelo , Zeolitas , Bovinos , Animales , Estiércol , Nitrógeno/análisis , Gases , Carbón Orgánico
5.
Waste Manag ; 155: 230-239, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399850

RESUMEN

Biochar amendment during biomass processing can improve those processes and products, and reduce the emissions of greenhouse gases and NH3, resulting in ecologic and economic benefits. The potential positive effects of biochar are related to NH4+-N and NH3 sorption, which in turn are depending on different biochar characteristics. By knowing the relationship between biochar characteristics and NH4+-N and NH3 sorption, biochar production can be steered towards a higher N sorption or existing biochars can be selected for targeted applications for high N sorption. Therefore, this study aims to develop fast screening tests to estimate the potential for both NH4+-N and NH3 sorption of biochar, before application in biomass processing. Further, the effects of feedstock, pyrolysis temperature, biochar characteristics and biochar treatments on N sorption are studied. The results show that NH4+-N sorption varied between 0 and 1.54 mg NH4+-N/g fresh biochar and was highest for manure-based biochars with a high nutrient content and cation exchange capacity, produced at lower temperatures (300-450 °C). For some biochars, the feedstock itself had a higher NH4+-N sorption than the biochar. Grinding and washing increased the NH4+-N sorption. In addition, a general linear model was proposed to predict the NH4+-N sorption based on three chemical characteristics· NH3 sorption varied between 0 and 100 % of the negative control and showed a linear positive relationship with the NH4+-N sorption, moisture retention factor and cation exchange capacity. Pyrolysis temperature and feedstock type did not significantly affect NH3 sorption. NH4+-N and NH3 desorption varied amongst biochar type.


Asunto(s)
Carbón Orgánico , Biomasa , Adsorción , Carbón Orgánico/química , Cationes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...