Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sustain Sci ; 18(2): 771-789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37012996

RESUMEN

The extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-economic and environmental factors, which exhibit high variation among countries. Yet, a global analysis of how these factors vary across countries is currently lacking. Here, we investigate how five broad, country-specific socio-economic and environmental indices (Governance, Trade, Environmental Performance, Lifestyle and Education, Innovation) explain country-level (1) established alien species (EAS) richness of eight taxonomic groups, and (2) proactive or reactive capacity to prevent and manage biological invasions and their impacts. These indices underpin many aspects of the invasion process, including the introduction, establishment, spread and management of alien species. They are also general enough to enable a global comparison across countries, and are therefore essential for defining future scenarios for biological invasions. Models including Trade, Governance, Lifestyle and Education, or a combination of these, best explained EAS richness across taxonomic groups and national proactive or reactive capacity. Historical (1996 or averaged over 1996-2015) levels of Governance and Trade better explained both EAS richness and the capacity of countries to manage invasions than more recent (2015) levels, revealing a historical legacy with important implications for the future of biological invasions. Using Governance and Trade to define a two-dimensional socio-economic space in which the position of a country captures its capacity to address issues of biological invasions, we identified four main clusters of countries in 2015. Most countries had an increase in Trade over the past 25 years, but trajectories were more geographically heterogeneous for Governance. Declines in levels of Governance are concerning as they may be responsible for larger levels of invasions in the future. By identifying the factors influencing EAS richness and the regions most susceptible to changes in these factors, our results provide novel insights to integrate biological invasions into scenarios of biodiversity change to better inform decision-making for policy and the management of biological invasions. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-022-01166-3.

2.
Nat Ecol Evol ; 6(11): 1723-1732, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36253544

RESUMEN

The redistribution of alien species across the globe accelerated with the start of European colonialism. European powers were responsible for the deliberate and accidental transportation, introduction and establishment of alien species throughout their occupied territories and the metropolitan state. Here, we show that these activities left a lasting imprint on the global distribution of alien plants. Specifically, we investigated how four European empires (British, Spanish, Portuguese and Dutch) structured current alien floras worldwide. We found that compositional similarity is higher than expected among regions that once were occupied by the same empire. Further, we provide strong evidence that floristic similarity between regions occupied by the same empire increases with the time a region was occupied. Network analysis suggests that historically more economically or strategically important regions have more similar alien floras across regions occupied by an empire. Overall, we find that European colonial history is still detectable in alien floras worldwide.


Asunto(s)
Colonialismo , Especies Introducidas , Plantas
3.
Biol Invasions ; 24(11): 3395-3421, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277057

RESUMEN

Community science (also often referred to as citizen science) provides a unique opportunity to address questions beyond the scope of other research methods whilst simultaneously engaging communities in the scientific process. This leads to broad educational benefits, empowers people, and can increase public awareness of societally relevant issues such as the biodiversity crisis. As such, community science has become a favourable framework for researching alien species where data on the presence, absence, abundance, phenology, and impact of species is important in informing management decisions. However, uncertainties arising at different stages can limit the interpretation of data and lead to projects failing to achieve their intended outcomes. Focusing on alien species centered community science projects, we identified key research questions and the relevant uncertainties that arise during the process of developing the study design, for example, when collecting the data and during the statistical analyses. Additionally, we assessed uncertainties from a linguistic perspective, and how the communication stages among project coordinators, participants and other stakeholders can alter the way in which information may be interpreted. We discuss existing methods for reducing uncertainty and suggest further solutions to improve data reliability. Further, we make suggestions to reduce the uncertainties that emerge at each project step and provide guidance and recommendations that can be readily applied in practice. Reducing uncertainties is essential and necessary to strengthen the scientific and community outcomes of community science, which is of particular importance to ensure the success of projects aimed at detecting novel alien species and monitoring their dynamics across space and time. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-022-02858-8.

4.
Biol Invasions ; 24(10): 3147-3167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131994

RESUMEN

The total impact of an alien species was conceptualised as the product of its range size, local abundance and per-unit effect in a seminal paper by Parker et al. (Biol Invasions 1:3-19, 1999). However, a practical approach for estimating the three components has been lacking. Here, we generalise the impact formula and, through use of regression models, estimate the relationship between the three components of impact, an approach we term GIRAE (Generalised Impact = Range size × Abundance × per-unit Effect). We discuss how GIRAE can be applied to multiple types of impact, including environmental impacts, damage and management costs. We propose two methods for applying GIRAE. The species-specific method computes the relationship between impact, range size, abundance and per-unit effect for a given species across multiple invaded sites or regions of different sizes. The multi-species method combines data from multiple species across multiple sites or regions to calculate a per-unit effect for each species and is computed using a single regression model. The species-specific method is more accurate, but it requires a large amount of data for each species and assumes a constant per-unit effect for a species across the invaded area. The multi-species method is more easily applicable and data-parsimonious, but assumes the same relationship between impact, range size and abundance for all considered species. We illustrate these methods using data about money spent managing plant invasions in different biomes of South Africa. We found clear differences between species in terms of money spent per unit area invaded, with per-unit expenditure varying substantially between biomes for some species-insights that are useful for monitoring and evaluating management. GIRAE offers a versatile and practical method that can be applied to many different types of data to better understand and manage the impacts of biological invasions. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-022-02836-0.

5.
J Anim Ecol ; 91(2): 404-416, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800042

RESUMEN

Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. We demonstrate the application and value of this method using a host-parasitoid system sampled along gradients of environmental modification. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained.


Asunto(s)
Ecosistema , Animales
6.
Ecosphere ; 12(2): e03359, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34938590

RESUMEN

Community and invasion ecology have mostly grown independently. There is substantial overlap in the processes captured by different models in the two fields, and various frameworks have been developed to reduce this redundancy and synthesize information content. Despite broad recognition that community and invasion ecology are interconnected, a process-based framework synthesizing models across these two fields is lacking. Here we review 65 representative community and invasion models and propose a common framework articulated around six processes (dispersal, drift, abiotic interactions, within-guild interactions, cross-guild interactions, and genetic changes). The framework is designed to synthesize the content of the two fields, provide a general perspective on their development, and enable their comparison. The application of this framework and of a novel method based on network theory reveals some lack of coherence between the two fields, despite some historical similarities. Community ecology models are characterized by combinations of multiple processes, likely reflecting the search for an overarching theory to explain community assembly and structure, drawing predominantly on interaction processes, but also accounting largely for the other processes. In contrast, most models in invasion ecology invoke fewer processes and focus more on interactions between introduced species and their novel biotic and abiotic environment. The historical dominance of interaction processes and their independent developments in the two fields is also reflected in the lower level of coherence for models involving interactions, compared to models involving dispersal, drift, and genetic changes. It appears that community ecology, with a longer history than invasion ecology, has transitioned from the search for single explanations for patterns observed in nature to investigate how processes may interact mechanistically, thereby generating and testing hypotheses. Our framework paves the way for a similar transition in invasion ecology, to better capture the dynamics of multiple alien species introduced in complex communities. Reciprocally, applying insights from invasion to community ecology will help us understand and predict the future of ecological communities in the Anthropocene, in which human activities are weakening species' natural boundaries. Ultimately, the successful integration of the two fields could advance a predictive ecology that is urgently required in a rapidly changing world.

8.
Ecology ; 100(11): e02832, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31323117

RESUMEN

Incidence, or compositional, matrices are generated for a broad range of research applications in biology. Zeta diversity provides a common currency and conceptual framework that links incidence-based metrics with multiple patterns of interest in biology, ecology, and biodiversity science. It quantifies the variation in species (or OTU) composition of multiple assemblages (or cases) in space or time, to capture the contribution of the full suite of narrow, intermediate, and wide-ranging species to biotic heterogeneity. Here we provide a conceptual framework for the application and interpretation of patterns of continuous change in compositional diversity using zeta diversity. This includes consideration of the survey design context, and the multiple ways in which zeta diversity decline and decay can be used to examine and test turnover in the identity of elements across space and time. We introduce the zeta ratio-based retention rate curve to quantify rates of compositional change. We illustrate these applications using 11 empirical data sets from a broad range of taxa, scales, and levels of biological organization-from DNA molecules and microbes to communities and interaction networks-including one of the original data sets used to express compositional change and distance decay in ecology. We show (1) how different sample selection schemes used during the calculation of compositional change are appropriate for different data types and questions, (2) how higher orders of zeta may in some cases better detect shifts and transitions, and (3) the relative roles of rare vs. common species in driving patterns of compositional change. By exploring the application of zeta diversity decline and decay, including the retention rate, across this broad range of contexts, we demonstrate its application for understanding continuous turnover in biological systems.


Asunto(s)
Biodiversidad , Ecología , Estudios Longitudinales
9.
Proc Biol Sci ; 286(1902): 20190174, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039720

RESUMEN

Critical thermal limits (CTLs) show much variation associated with the experimental rate of temperature change used in their estimation. Understanding the full range of variation in rate effects on CTLs and their underlying basis is thus essential if methodological noise is not to overwhelm or bias the ecological signal. We consider the effects of rate variation from multiple intraspecific assessments and provide a comprehensive empirical analysis of the rate effects on both the critical thermal maximum (CTmax) and critical thermal minimum (CTmin) for 47 species of ectotherms, exploring which of the available theoretical models best explains this variation. We find substantial interspecific variation in rate effects, which takes four different forms (increase, decline, no change, mixed), with phylogenetic signal in effects on CTmax, but not CTmin. Exponential and zero exponential failure rate models best explain the rate effects on CTmax. The majority of the empirical rate variation in CTmin could not be explained by the failure rate models. Our work demonstrates that rate effects cannot be ignored in comparative analyses, and suggests that incorporation of the failure rate models into such analyses is a useful further avenue for exploration of the fundamental basis and implications of such variation.


Asunto(s)
Artrópodos/fisiología , Peces/fisiología , Respuesta al Choque Térmico , Animales , Modelos Biológicos , Filogenia
10.
Ecology ; 99(12): 2763-2775, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30289566

RESUMEN

Communities comprising alien species with different residence times are natural experiments allowing the assessment of drivers of community assembly over time. Stochastic processes (such as dispersal and fluctuating environments) should be the dominant factors structuring communities of exotic species with short residence times. In contrast, communities should become more similar, or systematically diverge, if they contain exotics with increasing resident times, due to the increasing importance of deterministic processes (such as environmental filtering). We use zeta diversity (the number of species shared by multiple assemblages) to explore the relationship between the turnover of native species and two categories of alien species with different residence times (archaeophytes [introduced between 4000 BC and 1500 AD] and neophytes [introduced after 1500 AD]) in a network of nature reserves in central Europe. By considering multiple assemblages simultaneously, zeta diversity allows us to determine the contribution of rare and widespread species to turnover. Specifically, we explore the relative effects of assembly processes representing isolation by distance, environmental filtering, and environmental stochasticity (fluctuating environments) on zeta diversity using Multi-Site Generalized Dissimilarity Modelling (MS-GDM). Four clusters of results emerged. First, stochastic processes for structuring plant assemblages decreased in importance with increasing residence time. Environmental stochasticity only affected species composition for neophytes, offering possibilities to predict the spread debt of recent invasions. Second, native species turnover was well explained by environmental filtering and isolation by distance, although these factors did not explain the turnover of archaeophytes and neophytes. Third, native and alien species compositions were only correlated for rare species, whereas turnover in widespread alien species was surprisingly unrelated to the composition of widespread native species. Site-specific approaches would therefore be more appropriate for the monitoring and management of rare alien species, whereas species-specific approaches would suit widespread species. Finally, the size difference of nature reserves influences not only native species richness, but also their richness-independent turnover. A network of reserves must therefore be designed and managed using a variety of approaches to enhance native diversity, while controlling alien species with different residence times and degrees of commonness.


Asunto(s)
Especies Introducidas , Plantas , Biodiversidad , Europa (Continente) , Especificidad de la Especie
11.
Proc Biol Sci ; 282(1821): 20152417, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26702047

RESUMEN

Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral-niche community dynamics. The neutral-niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology.


Asunto(s)
Ecosistema , Modelos Biológicos , Ecología , Dispersión de las Plantas , Plantas
12.
PLoS One ; 9(6): e99938, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24979047

RESUMEN

The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.


Asunto(s)
Ecosistema , Locomoción , Modelos Biológicos , Modelos Estadísticos , Animales , Reno , Tecnología de Sensores Remotos
13.
J Anim Ecol ; 83(1): 185-98, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23859231

RESUMEN

Predators impact prey populations not only by consuming individuals, but also by altering their behaviours. These nonlethal effects can influence food web properties as much as lethal effects. The mechanisms of nonlethal effects include chronic and temporary anti-predator behaviours, the nature of which depends on the spatial dynamics of predators and the range over which prey perceive risk. The relation between chronic and ephemeral responses to risk determines predator-prey interactions, with consequences that can ripple across the food web. Nonetheless, few studies have quantified the spatio-temporal scales over which prey respond to predation threat, and how this response varies with habitat features. We evaluated the reaction of radio-collared caribou and moose to the passage of radio-collared wolves, by considering changes in movement characteristics during winter and summer. We used an optimization algorithm to identify the rate at which the impact of prior passage of wolves decreases over time and with the predator's distance. The spatial and temporal scales of anti-predator responses varied with prey species and season. Caribou and moose displayed four types of behaviour following the passage of wolves: lack of response, increased selection of safe land cover types, decreased selection of risky cover types and increased selection of food-rich forest stands. For example, moose increased their avoidance of open conifer stands with lichen in summer, which are selected by wolves in this season. Also in winter, caribou increased their selection of conifer stands with lichen for nearly 10 days following a wolf's passage. This stronger selection for food-rich patches could indicate that the recent passage of wolves informs caribou on the current predator distribution and reveals the rate at which this information become less reliable over time. Caribou and moose used anti-predator responses that combine both long- and short-term behavioural adjustments. The spatial game between wolves and their prey involves complex and nonlinear mechanisms that vary between species and seasons. A comprehensive assessment of risk effects on ecosystem dynamics thus requires the characterization of chronic and temporary anti-predator behaviours.


Asunto(s)
Ciervos/fisiología , Lobos/fisiología , Animales , Demografía , Cadena Alimentaria , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...