Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 393: 130053, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37993069

RESUMEN

Recent decarbonization efforts have led to interests in producing more bio-based chemicals. One attractive compound produced biochemically is the platform chemical known as 2,3-butanediol (2,3-BDO). In this work a mild alkaline pretreatment using sodium carbonate was performed on corn stover (CS) and switchgrass (SG) to generate hydrolysates for fermentation with the 2,3-BDO producer bacteria strain Paenibacillius polymyxa. Enzymatic hydrolysis performed on the pretreated CS and SG produced theoretical sugar yields of 80 % and 95 % for glucose and xylose, respectively. Fermentations with P. polymxya conducted in anaerobic bottles produced 2,3-BDO reaching concentrations ranging from 14 to 18 g/L with negligible conversion into acetoin. Bioreactor fermentations using the hydrolysate media generated up to 43 g/L and 34 g/L of 2,3-BDO from pretreated CS and SG, respectively, within 24 h of fermentation. However, 2,3-BDO product output was reduced by 40-50 % over the remainder of the fermentation due to conversion into acetoin caused by glucose depletion.


Asunto(s)
Paenibacillus polymyxa , Fermentación , Acetoína , Butileno Glicoles , Glucosa
2.
Appl Biochem Biotechnol ; 193(3): 761-776, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33188509

RESUMEN

Sweet sorghum bagasse (SSB) is an under-utilized feedstock for biochemical conversion to biofuels or high value chemicals. One such chemical that can be generated biochemically and applied to a wide array of industries from pharmaceuticals to the production of liquid transportation fuels is butyric acid. This work investigated cultivating the butyric acid producing strain Clostridium tyrobutyricum ATCC 25755 on low-moisture anhydrous ammonia (LMAA) pretreated SSB. Pretreated SSB hydrolysate was detoxified and supplemented with urea for shake flask batch fermentation to show that up to 11.4 g/L butyric acid could be produced with a selectivity of 87% compared to other organic acids. Bioreactor fermentation with pH control showed high biomass growth, but a similar output of 11.3 g/L butyric acid was achieved. However, the butyric acid productivity increased to 0.251 g/L∙hr with a butyric acid yield of 0.29 g/g sugar consumed. This butyric acid output represented an 83% theoretical yield. Further improvements in butyric acid titer and yield can be achieved by optimizing nutrient supplementation and incorporating fed-batch fermentation processing of pretreated SSB hydrolysate. Construction of ZGO:Sr NR- and ZGC@PDA NP-driven ratiometric aptasensor for CEA detection.


Asunto(s)
Amoníaco/química , Biomasa , Reactores Biológicos , Ácido Butírico/metabolismo , Clostridium tyrobutyricum/crecimiento & desarrollo , Sorghum/química
3.
Carbohydr Polym ; 213: 382-392, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30879682

RESUMEN

Arabinoxylans (AX) are potential agricultural co-products for material applications. Sorghum has seen increased production as a bioenergy crop for biofuel and co-product generation. AX from three sorghum fractions (bran, bagasse, and biomass) were isolated to study film formation. All three AX fractions exhibited high moisture sensitivity. Sorghum biomass AX produced low water vapor permeability compared to sorghum bran or sorghum bagasse AX films. Glycerol addition to sorghum bran AX films reduced tensile strength from 34.8 to 16.0 MPa at 0% and 10% (w/w) glycerol, respectively; reduced the storage and loss moduli during dynamic mechanical analyses at 50% relative humidity (RH) and decreased the rubber-to-plastic material transition temperature at 50% RH, from 78.1 °C to 38.4 °C at 0 and 10% (w/w) glycerol, respectively. Sorghum bran AX, while sensitive to water absorption at high RH, produced favorable strength performance compared to AX from other cereal grains indicating potential utilization as a renewable material.


Asunto(s)
Celulosa/síntesis química , Sorghum/química , Biomasa , Celulosa/química , Temperatura , Xilanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...