Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Front Pharmacol ; 15: 1373507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584598

RESUMEN

Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.

2.
Front Integr Neurosci ; 18: 1321872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440417

RESUMEN

Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.

3.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834817

RESUMEN

BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary ß and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.


Asunto(s)
Epilepsia , Canales de Potasio de Gran Conductancia Activados por el Calcio , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Genes vif , Neuronas/metabolismo , Membrana Celular/metabolismo , Epilepsia/genética , Calcio/metabolismo
4.
Biophys J ; 122(4): 661-671, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36654507

RESUMEN

Perturbing the temperature of a system modifies its energy landscape, thus providing a ubiquitous tool to understand biological processes. Here, we developed a framework to generate sudden temperature jumps (Tjumps) and sustained temperature steps (Tsteps) to study the temperature dependence of membrane proteins under voltage clamp while measuring the membrane temperature. Utilizing the melanin under the Xenopus laevis oocytes membrane as a photothermal transducer, we achieved short Tjumps up to 9°C in less than 1.5 ms and constant Tsteps for durations up to 150 ms. We followed the temperature at the membrane with sub-ms time resolution by measuring the time course of membrane capacitance, which is linearly related to temperature. We applied Tjumps in Kir1.1 isoform b, which reveals a highly temperature-sensitive blockage relief, and characterized the effects of Tsteps on the temperature-sensitive channels TRPM8 and TRPV1. These newly developed approaches provide a general tool to study membrane protein thermodynamics.


Asunto(s)
Canales Iónicos , Oocitos , Animales , Temperatura , Potenciales de la Membrana , Canales Iónicos/metabolismo , Membrana Celular/metabolismo , Termodinámica , Xenopus laevis/metabolismo , Oocitos/metabolismo
5.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203601

RESUMEN

The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic-hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.


Asunto(s)
Antifibrinolíticos , Ciona , Animales , Protones , Aminoácidos , Arginina
6.
Proc Natl Acad Sci U S A ; 119(25): e2204620119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35704760

RESUMEN

In neurosecretion, allosteric communication between voltage sensors and Ca2+ binding in BK channels is crucially involved in damping excitatory stimuli. Nevertheless, the voltage-sensing mechanism of BK channels is still under debate. Here, based on gating current measurements, we demonstrate that two arginines in the transmembrane segment S4 (R210 and R213) function as the BK gating charges. Significantly, the energy landscape of the gating particles is electrostatically tuned by a network of salt bridges contained in the voltage sensor domain (VSD). Molecular dynamics simulations and proton transport experiments in the hyperpolarization-activated R210H mutant suggest that the electric field drops off within a narrow septum whose boundaries are defined by the gating charges. Unlike Kv channels, the charge movement in BK appears to be limited to a small displacement of the guanidinium moieties of R210 and R213, without significant movement of the S4.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Gran Conductancia Activados por el Calcio , Arginina/metabolismo , Activación del Canal Iónico/genética , Simulación de Dinámica Molecular , Mutación
7.
Proc Natl Acad Sci U S A ; 119(15): e2104453119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377790

RESUMEN

Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population with high immunosuppressive activity that proliferates in infections, inflammation, and tumor microenvironments. In tumors, MDSC exert immunosuppression mainly by producing reactive oxygen species (ROS), a process triggered by the NADPH oxidase 2 (NOX2) activity. NOX2 is functionally coupled with the Hv1 proton channel in certain immune cells to support sustained free-radical production. However, a functional expression of the Hv1 channel in MDSC has not yet been reported. Here, we demonstrate that mouse MDSC express functional Hv1 proton channel by immunofluorescence microscopy, flow cytometry, and Western blot, besides performing a biophysical characterization of its macroscopic currents via patch-clamp technique. Our results show that the immunosuppression by MDSC is conditional to their ability to decrease the proton concentration elevated by the NOX2 activity, rendering Hv1 a potential drug target for cancer treatment.


Asunto(s)
Canales Iónicos , Células Supresoras de Origen Mieloide , Protones , Linfocitos T , Animales , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Células Supresoras de Origen Mieloide/inmunología , NADPH Oxidasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología
8.
Front Pharmacol ; 13: 837534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370739

RESUMEN

Bisphosphonates (BPs) are the most used bone-specific anti-resorptive agents, often chosen as first-line therapy in several bone diseases characterized by an imbalance between osteoblast-mediated bone production and osteoclast-mediated bone resorption. BPs target the farnesyl pyrophosphate synthase (FPPS) in osteoclasts, reducing bone resorption. Lately, there has been an increasing interest in BPs direct pro-survival/pro-mineralizing properties in osteoblasts and their pain-relieving effects. Even so, molecular targets involved in these effects appear now largely elusive. Ion channels are emerging players in bone homeostasis. Nevertheless, the effects of BPs on these proteins have been poorly described. Here we reviewed the actions of BPs on ion channels in musculoskeletal cells. In particular, the TRPV1 channel is essential for osteoblastogenesis. Since it is involved in bone pain sensation, TRPV1 is a possible alternative target of BPs. Ion channels are emerging targets and anti-target for bisphosphonates. Zoledronic acid can be the first selective musculoskeletal and vascular KATP channel blocker targeting with high affinity the inward rectifier channels Kir6.1-SUR2B and Kir6.2-SUR2A. The action of this drug against the overactive mutants of KCNJ9-ABCC9 genes observed in the Cantu' Syndrome (CS) may improve the appropriate prescription in those CS patients affected by musculoskeletal disorders such as bone fracture and bone frailty.

10.
Front Physiol ; 12: 761474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764886

RESUMEN

In the 1970s, calcium-activated potassium currents were recorded for the first time. In 10years, this Ca2+-activated potassium channel was identified in rat skeletal muscle, chromaffin cells and characterized in skeletal muscle membranes reconstituted in lipid bilayers. This calcium- and voltage-activated potassium channel, dubbed BK for "Big K" due to its large ionic conductance between 130 and 300 pS in symmetric K+. The BK channel is a tetramer where the pore-forming α subunit contains seven transmembrane segments. It has a modular architecture containing a pore domain with a highly potassium-selective filter, a voltage-sensor domain and two intracellular Ca2+ binding sites in the C-terminus. BK is found in the plasma membrane of different cell types, the inner mitochondrial membrane (mitoBK) and the nuclear envelope's outer membrane (nBK). Like BK channels in the plasma membrane (pmBK), the open probability of mitoBK and nBK channels are regulated by Ca2+ and voltage and modulated by auxiliary subunits. BK channels share common pharmacology to toxins such as iberiotoxin, charybdotoxin, paxilline, and agonists of the benzimidazole family. However, the precise role of mitoBK and nBK remains largely unknown. To date, mitoBK has been reported to play a role in protecting the heart from ischemic injury. At the same time, pharmacology suggests that nBK has a role in regulating nuclear Ca2+, membrane potential and expression of eNOS. Here, we will discuss at the biophysical level the properties and differences of mitoBK and nBK compared to those of pmBK and their pharmacology and function.

11.
Sci Adv ; 7(46): eabe5469, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767445

RESUMEN

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.

12.
Biochem Soc Trans ; 49(5): 2211-2219, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623379

RESUMEN

Living organisms require detecting the environmental thermal clues for survival, allowing them to avoid noxious stimuli or find prey moving in the dark. In mammals, the Transient Receptor Potential ion channels superfamily is constituted by 27 polymodal receptors whose activity is controlled by small ligands, peptide toxins, protons and voltage. The thermoTRP channels subgroup exhibits unparalleled temperature dependence -behaving as heat and cold sensors. Functional studies have dissected their biophysical features in detail, and the advances of single-particle Cryogenic Electron microscopy provided the structural framework required to propose detailed channel gating mechanisms. However, merging structural and functional evidence for temperature-driven gating of thermoTRP channels has been a hard nut to crack, remaining an open question nowadays. Here we revisit the highlights on the study of heat and cold sensing in thermoTRP channels in the light of the structural data that has emerged during recent years.


Asunto(s)
Activación del Canal Iónico , Termodinámica , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Humanos , Conformación Proteica , Temperatura
13.
Front Pharmacol ; 12: 687360, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177597

RESUMEN

BK channels are composed by the pore forming α subunit and, in some tissues, is associated with different accessory ß subunits. These proteins modify the biophysical properties of the channel, amplifying the range of BK channel activation according to the physiological context. In the vascular cells, the pore forming BKα subunit is expressed with the ß1 subunit, where they play an essential role in the modulation of arterial tone and blood pressure. In eukaryotes, cholesterol is a structural lipid of the cellular membrane. Changes in the ratio of cholesterol content in the plasma membrane (PM) regulates the BK channel activation altering its open probability, and hence, vascular contraction. It has been shown that the estrogen 17ß-Estradiol (E2) causes a vasodilator effect in vascular cells, inducing a leftward shift in the V0.5 of the GV curve. Here, we evaluate whether changes in the membrane cholesterol concentration modify the effect that E2 induces on the BKα/ß1 channel activity. Using binding and electrophysiology assays after cholesterol depletion or enrichment, we show that the cholesterol enrichment significantly decreases the expression of the α subunit, while cholesterol depletion increased the expression of that α subunit. Additionally, we demonstrated that changes in the membrane cholesterol cause the loss of the modulatory effect of E2 on the BKα/ß1 channel activity, without affecting the E2 binding to the complex. Our data suggest that changes in membrane cholesterol content could affect channel properties related to the E2 effect on BKα/ß1 channel activity. Finally, the results suggest that an optimal membrane cholesterol content is essential for the activation of BK channels through the ß1 subunit.

14.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941706

RESUMEN

The dissipation of acute acid loads by the voltage-gated proton channel (Hv1) relies on regulating the channel's open probability by the voltage and the ΔpH across the membrane (ΔpH = pHex - pHin). Using monomeric Ciona-Hv1, we asked whether ΔpH-dependent gating is produced during the voltage sensor activation or permeation pathway opening. A leftward shift of the conductance-voltage (G-V) curve was produced at higher ΔpH values in the monomeric channel. Next, we measured the voltage sensor pH dependence in the absence of a functional permeation pathway by recording gating currents in the monomeric nonconducting D160N mutant. Increasing the ΔpH leftward shifted the gating charge-voltage (Q-V) curve, demonstrating that the ΔpH-dependent gating in Hv1 arises by modulating its voltage sensor. We fitted our data to a model that explicitly supposes the Hv1 voltage sensor free energy is a function of both the proton chemical and the electrical potential. The parameters obtained showed that around 60% of the free energy stored in the ΔpH is coupled to the Hv1 voltage sensor activation. Our results suggest that the molecular mechanism underlying the Hv1 ΔpH dependence is produced by protons, which alter the free-energy landscape around the voltage sensor domain. We propose that this alteration is produced by accessibility changes of the protons in the Hv1 voltage sensor during activation.


Asunto(s)
Algoritmos , Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Modelos Biológicos , Protones , Secuencia de Aminoácidos , Animales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/genética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Simulación de Dinámica Molecular , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Homología de Secuencia de Aminoácido , Xenopus laevis
15.
Front Cell Dev Biol ; 9: 592946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614639

RESUMEN

Various families of ion channels have been characterized in mesenchymal stem cells (MSCs), including some members of transient receptor potential (TRP) channels family. TRP channels are involved in critical cellular processes as differentiation and cell proliferation. Here, we analyzed the expression of TRPM8 channel in human bone marrow MSCs (hBM-MSCs), and its relation with osteogenic differentiation. Patch-clamp recordings showed that hBM-MSCs expressed outwardly rectifying currents which were increased by exposure to 500 µM menthol and were partially inhibited by 10 µM of BCTC, a TRPM8 channels antagonist. Additionally, we have found the expression of TRPM8 by RT-PCR and western blot. We also explored the TRPM8 localization in hBM-MSCs by immunofluorescence using confocal microscopy. Remarkably, hBM-MSCs treatment with 100 µM of menthol or 10 µM of icilin, TRPM8 agonists, increases osteogenic differentiation. Conversely, 20 µM of BCTC, induced a decrease of osteogenic differentiation. These results suggest that TRPM8 channels are functionally active in hBM-MSCs and have a role in cell differentiation.

16.
Sci Rep ; 10(1): 18151, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097808

RESUMEN

High order oligomers are crucial for normal cell physiology, and protein function perturbed by missense mutations underlies several autosomal dominant diseases. Dynamin-2 is one of such protein forming helical oligomers that catalyze membrane fission. Mutations in this protein, where R465W is the most frequent, cause dominant centronuclear myopathy, but the molecular mechanisms underpinning the functional modifications remain to be investigated. To unveil the structural impact of this mutation in dynamin-2, we used full-atom molecular dynamics simulations and coarse-grained models and built dimers and helices of wild-type (WT) monomers, mutant monomers, or both WT and mutant monomers combined. Our results show that the mutation R465W causes changes in the interactions with neighbor amino acids that propagate through the oligomer. These new interactions perturb the contact between monomers and favor an extended conformation of the bundle signaling element (BSE), a dynamin region that transmits the conformational changes from the GTPase domain to the rest of the protein. This extended configuration of the BSE that is only relevant in the helices illustrates how a small change in the microenvironment surrounding a single residue can propagate through the oligomer structures of dynamin explaining how dominance emerges in large protein complexes.


Asunto(s)
Dinamina II/genética , Miopatías Estructurales Congénitas/patología , Dominios Proteicos/genética , Multimerización de Proteína/genética , Arginina/genética , Cristalografía por Rayos X , Dinamina II/metabolismo , Dinamina II/ultraestructura , Humanos , Simulación de Dinámica Molecular , Mutación Missense , Miopatías Estructurales Congénitas/genética , Conformación Proteica en Hélice alfa/genética , Triptófano/genética
17.
Proc Natl Acad Sci U S A ; 117(33): 20298-20304, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747539

RESUMEN

In mammals, temperature-sensitive TRP channels make membrane conductance of cells extremely temperature dependent, allowing the detection of temperature ranging from noxious cold to noxious heat. We progressively deleted the distal carboxyl terminus domain (CTD) of the cold-activated melastatin receptor channel, TRPM8. We found that the enthalpy change associated with channel gating is proportional to the length of the CTD. Deletion of the last 36 amino acids of the CTD transforms TRPM8 into a reduced temperature-sensitivity channel (Q10 ∼4). Exposing the intracellular domain to a denaturing agent increases the energy required to open the channel indicating that cold drives channel gating by stabilizing the folded state of the CTD. Experiments in the presence of an osmoticant agent suggest that channel gating involves a change in solute-inaccessible volume in the CTD of ∼1,900 Å3 This volume matches the void space inside the coiled coil according to the cryogenic electron microscopy structure of TRPM8. The results indicate that a folding-unfolding reaction of a specialized temperature-sensitive structure is coupled to TRPM8 gating.


Asunto(s)
Dominios Proteicos , Pliegue de Proteína , Canales Catiónicos TRPM/química , Animales , Frío , Microscopía por Crioelectrón , Humanos , Activación del Canal Iónico , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oocitos , Conformación Proteica , Canales Catiónicos TRPM/metabolismo , Termodinámica , Xenopus laevis
18.
Biophys J ; 119(2): 236-242, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32579966

RESUMEN

The Na+/K+-ATPase is a chemical molecular machine responsible for the movement of Na+ and K+ ions across the cell membrane. These ions are moved against their electrochemical gradients, so the protein uses the free energy of ATP hydrolysis to transport them. In fact, the Na+/K+-ATPase is the single largest consumer of energy in most cells. In each pump cycle, the protein sequentially exports 3Na+ out of the cell, then imports 2K+ into the cell at an approximate rate of 200 cycles/s. In each half cycle of the transport process, there is a state in which ions are stably trapped within the permeation pathway of the protein by internal and external gates in their closed states. These gates are required to open alternately; otherwise, passive ion diffusion would be a wasteful end of the cell's energy. Once one of these gates open, ions diffuse from their binding sites to the accessible milieu, which involves moving through part of the electrical field across the membrane. Consequently, ions generate transient electrical currents first discovered more than 30 years ago. They have been studied in a variety of preparations, including native and heterologous expression systems. Here, we review three decades' worth of work using these transient electrical signals to understand the kinetic transitions of the movement of Na+ and K+ ions through the Na+/K+-ATPase and propose the significance that this work might have to the understanding of the dysfunction of human pump orthologs responsible for some newly discovered neurological pathologies.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Sodio , Biofisica , Humanos , Iones/metabolismo , Cinética , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
19.
Front Physiol ; 11: 444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528302

RESUMEN

17ß-estradiol is a neuronal survival factor against oxidative stress that triggers its protective effect even in the absence of classical estrogen receptors. The polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channel has been proposed as a steroid receptor implied in tissue protection against oxidative damage. We show here that TRPV1 is sufficient condition for 17ß-estradiol to enhance metabolic performance in injured cells. Specifically, in TRPV1 expressing cells, the application of 17ß-estradiol within the first 3 h avoided H2O2-dependent mitochondrial depolarization and the activation of caspase 3/7 protecting against the irreversible damage triggered by H2O2. Furthermore, 17ß-estradiol potentiates TRPV1 single channel activity associated with an increased open probability. This effect was not observed after the application of 17α-estradiol. We explored the TRPV1-Estrogen relationship also in primary culture of hippocampal-derived neurons and observed that 17ß-estradiol cell protection against H2O2-induced damage was independent of estrogen receptors pathway activation, membrane started and stereospecific. These results support the role of TRPV1 as a 17ß-estradiol-activated ionotropic membrane receptor coupling with mitochondrial function and cell survival.

20.
Proc Natl Acad Sci U S A ; 117(11): 6023-6034, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132200

RESUMEN

Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.


Asunto(s)
Cerebelo/patología , Clorzoxazona/administración & dosificación , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Mitocondrias/patología , Degeneraciones Espinocerebelosas/genética , Adolescente , Animales , Animales Recién Nacidos , Línea Celular , Cerebelo/citología , Análisis Mutacional de ADN , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Mutación con Pérdida de Función , Ratones , Oocitos , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Degeneraciones Espinocerebelosas/diagnóstico , Degeneraciones Espinocerebelosas/tratamiento farmacológico , Degeneraciones Espinocerebelosas/patología , Transfección , Secuenciación del Exoma , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...