Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 20(12): e48896, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31584242

RESUMEN

The obligate intracellular parasites Toxoplasma gondii and Plasmodium spp. invade host cells by injecting a protein complex into the membrane of the targeted cell that bridges the two cells through the assembly of a ring-like junction. This circular junction stretches while the parasites apply a traction force to pass through, a step that typically concurs with transient constriction of the parasite body. Here we analyse F-actin dynamics during host cell invasion. Super-resolution microscopy and real-time imaging highlighted an F-actin pool at the apex of pre-invading parasite, an F-actin ring at the junction area during invasion but also networks of perinuclear and posteriorly localised F-actin. Mutant parasites with dysfunctional acto-myosin showed significant decrease of junctional and perinuclear F-actin and are coincidently affected in nuclear passage through the junction. We propose that the F-actin machinery eases nuclear passage by stabilising the junction and pushing the nucleus through the constriction. Our analysis suggests that the junction opposes resistance to the passage of the parasite's nucleus and provides the first evidence for a dual contribution of actin-forces during host cell invasion by apicomplexan parasites.


Asunto(s)
Actinas/fisiología , Interacciones Huésped-Parásitos/fisiología , Plasmodium falciparum/fisiología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/fisiología , Toxoplasma/parasitología , Toxoplasma/patogenicidad , Actinas/genética , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/parasitología , Núcleo Celular/fisiología , Células Cultivadas , Técnicas de Inactivación de Genes , Humanos , Merozoítos/genética , Merozoítos/patogenicidad , Merozoítos/fisiología , Modelos Biológicos , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Transducción de Señal , Toxoplasma/genética , Virulencia/fisiología
2.
Elife ; 62017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28322189

RESUMEN

Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics.


Asunto(s)
Actinas/análisis , Toxoplasma/química , Toxoplasma/crecimiento & desarrollo , Coloración y Etiquetado/métodos
3.
BMC Biol ; 15(1): 1, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100223

RESUMEN

BACKGROUND: Apicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite's actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from force production during parasite movement. RESULTS: In this study, we compared the phenotypes of different mutants for core components of the actomyosin system in Toxoplasma gondii to decipher their exact role during gliding motility and invasion. We found that, while some phenotypes (apicoplast segregation, host cell egress, dense granule motility) appeared early after induction of the act1 knockout and went to completion, a small percentage of the parasites remained capable of motility and invasion well past the point at which actin levels were undetectable. Those act1 conditional knockout (cKO) and mlc1 cKO that continue to move in 3D do so at speeds similar to wildtype parasites. However, these mutants are virtually unable to attach to a collagen-coated substrate under flow conditions, indicating an important role for the actomyosin system of T. gondii in the formation of attachment sites. CONCLUSION: We demonstrate that parasite actin is essential during the lytic cycle and cannot be compensated by other molecules. Our data suggest a conventional polymerisation mechanism in vivo that depends on a critical concentration of G-actin. Importantly, we demonstrate that the actomyosin system of the parasite functions in attachment to the surface substrate, and not necessarily as force generator.


Asunto(s)
Actomiosina/metabolismo , Movimiento Celular , Toxoplasma/citología , Toxoplasma/patogenicidad , Actinas/metabolismo , Animales , Apicoplastos/efectos de los fármacos , Apicoplastos/metabolismo , Adhesión Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Técnicas de Inactivación de Genes , Cinética , Mutación/genética , Parásitos/efectos de los fármacos , Parásitos/metabolismo , Fenotipo , Proteínas Protozoarias/metabolismo , Reología , Sirolimus/farmacología , Estrés Mecánico , Toxoplasma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...