Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Aging ; 3(12): 1544-1560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957359

RESUMEN

Late-life-initiated dietary interventions show limited efficacy in extending longevity or mitigating frailty, yet the underlying causes remain unclear. Here we studied the age-related fasting response of the short-lived killifish Nothobranchius furzeri. Transcriptomic analysis uncovered the existence of a fasting-like transcriptional program in the adipose tissue of old fish that overrides the feeding response, setting the tissue in persistent metabolic quiescence. The fasting-refeeding cycle triggers an inverse oscillatory expression of genes encoding the AMP-activated protein kinase (AMPK) regulatory subunits Prkag1 (γ1) and Prkag2 (γ2) in young individuals. Aging blunts such regulation, resulting in reduced Prkag1 expression. Transgenic fish with sustained AMPKγ1 countered the fasting-like transcriptional program, exhibiting a more youthful feeding and fasting response in older age, improved metabolic health and longevity. Accordingly, Prkag1 expression declines with age in human tissues and is associated with multimorbidity and multidimensional frailty risk. Thus, selective activation of AMPKγ1 prevents metabolic quiescence and preserves healthy aging in vertebrates, offering potential avenues for intervention.


Asunto(s)
Fragilidad , Longevidad , Animales , Humanos , Longevidad/genética , Proteínas Quinasas Activadas por AMP/genética , Envejecimiento/genética , Peces/metabolismo
2.
Anal Bioanal Chem ; 413(26): 6457-6468, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34476522

RESUMEN

Cyclic dinucleotides (CDNs) are key secondary messenger molecules produced by cyclic dinucleotide synthases that trigger various cellular signaling cascades from bacteria to vertebrates. In mammals, cyclic GMP-AMP synthase (cGAS) has been shown to bind to intracellular DNA and catalyze the production of the dinucleotide 2'3' cGAMP, which signals downstream effectors to regulate immune function, interferon signaling, and the antiviral response. Despite the importance of CDNs, sensitive and accurate methods to measure their levels in vivo are lacking. Here, we report a novel LC-MS/MS method to quantify CDNs in vivo. We characterized the mass spectrometric behavior of four different biologically relevant CDNs (c-di-AMP, c-di-GMP, 3'3' cGAMP, 2'3' cGAMP) and provided a means of visually representing fragmentation resulting from collision-induced dissociation at different energies using collision energy breakdown graphs. We then validated the method and quantified CDNs in two in vivo systems, the bacteria Escherichia coli OP50 and the killifish Nothobranchius furzeri. We found that optimization of LC-MS/MS parameters is crucial to sensitivity and accuracy. These technical advances should help illuminate physiological and pathological roles of these CDNs in in vivo settings. Graphical abstract.


Asunto(s)
GMP Cíclico/análogos & derivados , Fosfatos de Dinucleósidos/análisis , Nucleótidos Cíclicos/análisis , Animales , Cromatografía Liquida , GMP Cíclico/análisis , Escherichia coli/química , Fundulidae/metabolismo , Espectrometría de Masas en Tándem
4.
Nat Commun ; 12(1): 3486, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108489

RESUMEN

The metabolome represents a complex network of biological events that reflects the physiologic state of the organism in health and disease. Additionally, specific metabolites and metabolic signaling pathways have been shown to modulate animal ageing, but whether there are convergent mechanisms uniting these processes remains elusive. Here, we used high resolution mass spectrometry to obtain the metabolomic profiles of canonical longevity pathways in C. elegans to identify metabolites regulating life span. By leveraging the metabolomic profiles across pathways, we found that one carbon metabolism and the folate cycle are pervasively regulated in common. We observed similar changes in long-lived mouse models of reduced insulin/IGF signaling. Genetic manipulation of pathway enzymes and supplementation with one carbon metabolites in C. elegans reveal that regulation of the folate cycle represents a shared causal mechanism of longevity and proteoprotection. Such interventions impact the methionine cycle, and reveal methionine restriction as an underlying mechanism. This comparative approach reveals key metabolic nodes to enhance healthy ageing.


Asunto(s)
Carbono/metabolismo , Ácido Fólico/metabolismo , Longevidad/fisiología , Redes y Vías Metabólicas , Animales , Caenorhabditis elegans , Insulina/metabolismo , Longevidad/genética , Redes y Vías Metabólicas/genética , Metaboloma , Metionina/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Péptidos/metabolismo , Transducción de Señal , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolatos/metabolismo , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
5.
J Cell Sci ; 134(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33973637

RESUMEN

Stem cell differentiation is accompanied by increased mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine and spermine, which are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigate the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. Compared to progenitor cells, HFSCs showed lower translation rates, correlating with reduced polyamine levels. Surprisingly, overall polyamine depletion decreased translation but did not affect cell fate. In contrast, specific depletion of natural polyamines mediated by spermidine/spermine N1-acetyltransferase (SSAT; also known as SAT1) activation did not reduce translation but enhanced stemness. These results suggest a translation-independent role of polyamines in cell fate regulation. Indeed, we identified N1-acetylspermidine as a determinant of cell fate that acted through increasing self-renewal, and observed elevated N1-acetylspermidine levels upon depilation-mediated HFSC proliferation and differentiation in vivo. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Folículo Piloso , Espermina , Acetiltransferasas/genética , Diferenciación Celular , Espermidina , Células Madre
6.
Anal Bioanal Chem ; 412(17): 4089-4099, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32333075

RESUMEN

Steroids are essential structural components of cell membranes that organize lipid rafts and modulate membrane fluidity. They can also act as signalling molecules that work through nuclear and G protein-coupled receptors to impact health and disease. Notably, changes in steroid levels have been implicated in metabolic, cardiovascular and neurodegenerative diseases, but how alterations in the steroid pool affect ageing is less well understood. One of the major challenges in steroidomic analysis is the ability to simultaneously detect and distinguish various steroids due to low in vivo concentrations and naturally occurring stereoisomers. Here, we established such a method to study the mass spectrometry behaviour of nine sterols/steroids and related molecules (cholesterol precursors: squalene, lanosterol; sterol metabolites; 7 Dehydrocholesterol, 24, 25 and 27 Hydroxycholesterol; and steroids: progesterone, testosterone, and corticosterone) during ageing in the African turquoise killifish, a new model for studying vertebrate longevity. We find that levels of all tested steroids change significantly with age in multiple tissues, suggesting that specific steroids could be used as biomarkers of ageing. These findings pave the way for use of Nothobranchius furzeri as a novel model organism to unravel the role of sterols/steroids in ageing and age-related diseases. Graphical abstract.


Asunto(s)
Envejecimiento , Fundulidae/fisiología , Esteroides/análisis , Animales , Colesterol/análogos & derivados , Colesterol/análisis , Colesterol/metabolismo , Espectrometría de Masas , Estereoisomerismo , Esteroides/metabolismo
7.
J Mass Spectrom ; 54(4): 316-327, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30675959

RESUMEN

Folic acid (FA) plays a vital role in central metabolism, including the one carbon cycle, nucleotide, and amino acid biosynthesis. The development of sensitive, accurate analytical methods to measure FA intermediates in tissues is critical to understand their biological roles in diverse physiological and pathological contexts. Here, we developed a highly sensitive method for the simultaneous quantification of FA intermediates in the nematode Caenorhabditis elegans as a model to dissect metabolic networks. The method was further validated by analyzing the worm folate pool upon RNAi knockdown of the dihydrofolate reductase gene dhfr-1. Comparative mass spectrometry behavior of the FA analogs using two different ion sources, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), revealed ESI-MS/MS to be more sensitive, but APCI-MS provided more detailed structure inferences, which can elucidate chemical investigation and synthesis of FA analogs. Finally, we report on the use of in vitro oxidation coupled with high-resolution mass spectrometry as a tool to discover new endogenous FA derivatives in the nematode.


Asunto(s)
Caenorhabditis elegans/química , Mezclas Complejas/análisis , Ácido Fólico/análogos & derivados , Ácido Fólico/análisis , Animales , Cromatografía Líquida de Alta Presión/métodos , Ácido Fólico/metabolismo , Espectrometría de Masas/métodos , Redes y Vías Metabólicas , Sensibilidad y Especificidad , Tetrahidrofolato Deshidrogenasa/genética
8.
Nat Commun ; 7: 10944, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001890

RESUMEN

Germline removal provokes longevity in several species and shifts resources towards survival and repair. Several Caenorhabditis elegans transcription factors regulate longevity arising from germline removal; yet, how they work together is unknown. Here we identify a Myc-like HLH transcription factor network comprised of Mondo/Max-like complex (MML-1/MXL-2) to be required for longevity induced by germline removal, as well as by reduced TOR, insulin/IGF signalling and mitochondrial function. Germline removal increases MML-1 nuclear accumulation and activity. Surprisingly, MML-1 regulates nuclear localization and activity of HLH-30/TFEB, a convergent regulator of autophagy, lysosome biogenesis and longevity, by downregulating TOR signalling via LARS-1/leucyl-transfer RNA synthase. HLH-30 also upregulates MML-1 upon germline removal. Mammalian MondoA/B and TFEB show similar mutual regulation. MML-1/MXL-2 and HLH-30 transcriptomes show both shared and preferential outputs including MDL-1/MAD-like HLH factor required for longevity. These studies reveal how an extensive interdependent HLH transcription factor network distributes responsibility and mutually enforces states geared towards reproduction or survival.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Gónadas/metabolismo , Longevidad , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Animales , Autofagia , Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Germinativas/metabolismo , Transporte de Proteínas , Reproducción
9.
Cell Res ; 26(2): 229-38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26691751

RESUMEN

Complex organismal properties such as longevity can be transmitted across generations by non-genetic factors. Here we demonstrate that deletion of the C. elegans histone H3 lysine 4 dimethyl (H3K4me2) demethylase, spr-5, causes a trans-generational increase in lifespan. We identify a chromatin-modifying network, which regulates this lifespan extension. We further show that this trans-generational lifespan extension is dependent on a hormonal signaling pathway involving the steroid dafachronic acid, an activator of the nuclear receptor DAF-12. These findings suggest that loss of the demethylase SPR-5 causes H3K4me2 mis-regulation and activation of a known lifespan-regulating signaling pathway, leading to trans-generational lifespan extension.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Histona Demetilasas/genética , Longevidad/genética , Mutación/genética , Animales , Colestenos/metabolismo , Cromatina/genética , Histonas/genética , Metilación , Transducción de Señal/genética
10.
Cell Metab ; 18(2): 212-24, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23931753

RESUMEN

Hormone-gated nuclear receptors (NRs) are conserved transcriptional regulators of metabolism, reproduction, and homeostasis. Here we show that C. elegans NHR-8 NR, a homolog of vertebrate liver X and vitamin D receptors, regulates nematode cholesterol balance, fatty acid desaturation, apolipoprotein production, and bile acid metabolism. Loss of nhr-8 results in a deficiency in bile acid-like steroids, called the dafachronic acids, which regulate the related DAF-12/NR, thus controlling entry into the long-lived dauer stage through cholesterol availability. Cholesterol supplementation rescues various nhr-8 phenotypes, including developmental arrest, unsaturated fatty acid deficiency, reduced fertility, and shortened life span. Notably, nhr-8 also interacts with daf-16/FOXO to regulate steady-state cholesterol levels and is synthetically lethal in combination with insulin signaling mutants that promote unregulated growth. Our studies provide important insights into nuclear receptor control of cholesterol balance and metabolism and their impact on development, reproduction, and aging in the context of larger endocrine networks.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Metabolismo de los Lípidos/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Apolipoproteínas/biosíntesis , Transporte Biológico , Caenorhabditis elegans/genética , Colestenos/metabolismo , Ácidos Grasos/metabolismo , Fertilidad/genética , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Homeostasis , Longevidad/genética , Datos de Secuencia Molecular , Oxigenasas/metabolismo , Alineación de Secuencia , Transducción de Señal/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...