Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(10)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38055988

RESUMEN

Recent advancements in the fabrication of layered halide perovskites and their subsequent modification for optoelectronic applications have ushered in a need for innovative characterisation techniques. In particular, heterostructures containing multiple phases and consequently featuring spatially defined optoelectronic properties are very challenging to study. Here, we adopt an approach centered on cathodoluminescence, complemented by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis. Cathodoluminescence enables assessment of local emission variations by injecting charges with a nanometer-scale electron probe, which we use to investigate emission changes in three different systems: PEA2PbBr4, PEA2PbI4and lateral heterostructures of the two, fabricated via halide substitution. We identify and map different emission bands that can be correlated with local chemical composition and geometry. One emission band is characteristic of bromine-based halide perovskite, while the other originates from iodine-based perovskite. The coexistence of these emissions bands in the halide-substituted sample confirms the formation of lateral heterostructures. To improve the signal quality of the acquired data, we employed multivariate analysis, specifically the non-negative matrix factorization algorithm, on both cathodoluminescence and compositional datasets. The resulting understanding of the halide replacement process and identification of potential synergies in the optical properties will lead to optimised architectures for optoelectronic applications.

2.
ACS Energy Lett ; 8(6): 2630-2640, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37324542

RESUMEN

Organic-inorganic Pb-free layered perovskites are efficient broadband emitters and thus are promising materials for lighting applications. However, their synthetic protocols require a controlled atmosphere, high temperature, and long preparation time. This hinders the potential tunability of their emission through organic cations, as is instead common practice in Pb-based structures. Here, we present a set of Sn-Br layered perovskite-related structures that display different chromaticity coordinates and photoluminescence quantum yield (PLQY) up to 80%, depending on the choice of the organic monocation. We first develop a synthetic protocol that is performed under air and at 4 °C, requiring only a few steps. X-ray and 3D electron diffraction analyses show that the structures exhibit diverse octahedra connectivity (disconnected and face-sharing) and thus optical properties, while preserving the organic-inorganic layer intercalation. These results provide key insight into a previously underexplored strategy to tune the color coordinates of Pb-free layered perovskites through organic cations with complex molecular configurations.

3.
J Mater Chem A Mater ; 11(24): 12866-12875, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37346737

RESUMEN

Improving the perovskite/electron-transporting layer (ETL) interface is a crucial task to boost the performance of perovskite solar cells (PSCs). This is utterly fundamental in an inverted (p-i-n) configuration using fullerene-based ETLs. Here, we propose a scalable strategy to improve fullerene-based ETLs by incorporating high-quality few-layer graphene flakes (GFs), industrially produced through wet-jet milling exfoliation of graphite, into phenyl-C61-butyric acid methyl ester (PCBM). Our new composite ETL (GF:PCBM) can be processed into an ultrathin (∼10 nm), pinhole-free film atop the perovskite. We find that the presence of GFs in the PCBM matrix reduces defect-mediated recombination, while creating preferential paths for the extraction of electrons towards the current collector. The use of our GF-based composite ETL resulted in a significant enhancement in the open circuit voltage and fill factor of triple cation-based inverted PSCs, boosting the power conversion efficiency from ∼19% up to 20.8% upon the incorporation of GFs into the ETL.

4.
ACS Appl Mater Interfaces ; 15(25): 30008-30028, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37312240

RESUMEN

Prostate malignancy represents the second leading cause of cancer-specific death among the male population worldwide. Herein, enhanced intracellular magnetic fluid hyperthermia is applied in vitro to treat prostate cancer (PCa) cells with minimum invasiveness and toxicity and highly specific targeting. We designed and optimized novel shape-anisotropic magnetic core-shell-shell nanoparticles (i.e., trimagnetic nanoparticles - TMNPs) with significant magnetothermal conversion following an exchange coupling effect to an external alternating magnetic field (AMF). The functional properties of the best candidate in terms of heating efficiency (i.e., Fe3O4@Mn0.5Zn0.5Fe2O4@CoFe2O4) were exploited following surface decoration with PCa cell membranes (CM) and/or LN1 cell-penetrating peptide (CPP). We demonstrated that the combination of biomimetic dual CM-CPP targeting and AMF responsiveness significantly induces caspase 9-mediated apoptosis of PCa cells. Furthermore, a downregulation of the cell cycle progression markers and a decrease of the migration rate in surviving cells were observed in response to the TMNP-assisted magnetic hyperthermia, suggesting a reduction in cancer cell aggressiveness.


Asunto(s)
Péptidos de Penetración Celular , Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias de la Próstata , Masculino , Humanos , Nanopartículas/química , Membrana Celular , Campos Magnéticos , Neoplasias de la Próstata/terapia , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/química
5.
Langmuir ; 39(22): 7793-7803, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37231662

RESUMEN

An effective and sustainable approach to deal with the scarcity of freshwater is interfacial solar-driven evaporation. Nonetheless, some serious challenges for photothermal materials still need to be considered, such as long-term stability in harsh environments, eco-friendly materials, and cost-effective and simple fabrication processes. Keeping these points in mind, we present a multifunctional silver-coated vegetable waste biocomposite cryogel that not only exhibits high porosity and enhanced wettability and stability but also possesses high light absorption and low thermal conductivity favorable for heat localization, solar steam generation, and efficient photothermal conversion efficiency. The achieved solar evaporation rate is 1.17 kg m-2 h-1 with a solar-to-vapor conversion efficiency of 81.11% under 1 Sun irradiation. The developed material is able to effectively desalinate artificial seawater and decontaminate synthetic wastewater (e.g., water containing dye molecules and mercury ions) with an efficiency of >99%. Most importantly, the composite cryogel presents antifouling properties, and in particular, salt antifouling ability and anti-biofouling properties. Thus, the numerous functionalities of the biocomposite cryogel make it a cost-effective promising device for prolonged water decontamination processes.

6.
Adv Mater ; 35(23): e2211037, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36994787

RESUMEN

The integration of 2D materials in triboelectric nanogenerators (TENGs) is known to increase the mechanical-to-electrical power conversion efficiency. 2D materials are used in TENGs with multiple roles as triboelectric material, charge-trapping fillers, or as electrodes. Here, novel TENGs based on few-layers graphene (FLG) electrodes and stable gel electrolytes composed of liquid phase exfoliated 2D-transition metal dichalcogenides and polyvinyl alcohol are developed. TENGs embedding FLG and gel composites show competitive open-circuit voltage (≈ 300 V), instant peak power (530 mW m-2 ), and stability (> 11 months). These values correspond to a seven-fold higher electrical output compared to TENGs embedding bare FLG electrodes. It is demonstrated that such a significant improvement depends on the high electrical double-layer capacitance (EDLC) of FLG electrodes functionalized with the gel composites. The wet encapsulation of the TENGs is shown to be an effective strategy to increase their power output further highlighting the EDLC role. It is also shown that the EDLC is dependent upon the transition metal (W vs Mo) rather than the relative abundance of 1T or 2H phases. Overall, this work lays down the roots for novel sustainable electrochemical-(e)-TENGs developed exploiting strategies typically used in electrochemical capacitors.

7.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159827

RESUMEN

Titanium dioxide nanocrystals (TiO2 NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O2 and H2O. This special feature makes TiO2 an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO2 NCs may be also exploited in the agricultural sector. However, the effects of TiO2 NCs on plants are not fully understood and/or phase-pure TiO2 NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO2 NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, Vitis vinifera cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO2 NCs at concentrations of 0.001, 0.01, 0.1, and 1 w/v%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO2 NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms.

8.
ACS Nano ; 16(1): 1444-1455, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35005882

RESUMEN

The interaction of lead bromide perovskite nanocrystals with charged ligands, such as salts, zwitterions, or acid-base pairs, has been extensively documented over the past few years. On the other hand, little is known about the reactivity of perovskite nanocrystals toward neutral ligands. To fill this gap, in this work we study the interaction of CsPbBr3 nanocrystals passivated with didodecyldimethylammonium bromide (DDABr) toward a series of exogenous acid/base ligands using a combined computational and experimental approach. Our analysis indicates that DDABr-capped nanocrystals are inert toward most ligands, except for carboxylic, phosphonic, and sulfonic acids. In agreement with the calculations, our experimental results indicate that the higher the acidity of the ligands employed in the treatment, the more etching is observed. In detail, dodecylbenzenesulfonic acid (pKa = -1.8) is found to etch the nanocrystals, causing their complete degradation. On the other hand, oleic and oleylphosphonic acids (pKa 9.9 and 2, respectively) interact with surface-bound DDA molecules, causing their displacement as DDABr in various amounts, which can be as high as 40% (achieved with oleylphosphonic acid). Despite the stripping of DDA ligands, the optical properties of the nanocrystals, as well as structure and morphology, remain substantially unaffected, empirically demonstrating the defect tolerance characterizing such materials. Our study provides not only a clear overview on the interaction between perovskite nanocrystals and neutral ligands but also presents an effective ligand stripping strategy.

9.
ACS Nano ; 16(1): 351-367, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34939404

RESUMEN

The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The as-produced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The as-synthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g-1 at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm-2 = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g-1 at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm-2 = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications.

10.
Int J Biol Macromol ; 180: 709-717, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771545

RESUMEN

The fabrication of pectin-cellulose nanocrystal (CNC) biocomposites has been systematically investigated by blending both polysaccharides at different relative concentrations. Circular free-standing films with a diameter of 9 cm were prepared by simple solution of these carbohydrates in water followed by drop-casting and solvent evaporation. The addition of pectin allows to finely tune the properties of the biocomposites. Textural characterization by AFM showed fibrous morphology and an increase in fiber diameter with pectin content. XRD analysis demonstrated that pectin incorporation also reduced the degree of crystallinity though no specific interaction between both polysaccharides was detected, by ATR-FTIR spectroscopy. The optical properties of these biocomposites were characterized for the first time and it was found that pectin in the blend reduced the reflectance of visible light and increased UV absorbance. Thermal stability, analyzed by TGA, was improved with the incorporation of pectin. Finally, pectin-cellulose nanocrystal biocomposites showed a good biodegradability in seawater, comparable to other common bioplastics such as cellulose and low-molecular weight polylactide, among others.


Asunto(s)
Celulosa/química , Nanocompuestos/química , Nanopartículas/química , Pectinas/química , Hidrólisis , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Nanopartículas/ultraestructura , Fenómenos Físicos , Polisacáridos/química , Agua de Mar/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
11.
ACS Appl Energy Mater ; 4(10): 11194-11203, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-35928767

RESUMEN

Herein, we focus on improving the long-term chemical and thermomechanical stability of perovskite solar cells (PSCs), two major challenges currently limiting their commercial deployment. Our strategy incorporates a long-chain starch polymer into the perovskite precursor. The starch polymer confers multiple beneficial effects by forming hydrogen bonds with the methylammonium iodide precursor, templating perovskite growth that results in a compact and homogeneous film deposited in a simple one-step coating (antisolvent-free). The inclusion of starch in the methylammonium lead iodide films strongly improves their thermomechanical and environmental stability while maintaining a high photovoltaic performance. The fracture energy (G c) of the film is increased to above 5 J/m2 by creating a nanocomposite that provides intrinsic reinforcement at grain boundaries. Additionally, improved optoelectronic properties achieved with the starch polymer enable good photostability of the active layer and enhanced resistance to thermal cycling.

12.
RSC Adv ; 11(56): 35051-35060, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35493174

RESUMEN

The printing of three-dimensional (3D) porous electrodes for Li-ion batteries is considered a key driver for the design and realization of advanced energy storage systems. While different 3D printing techniques offer great potential to design and develop 3D architectures, several factors need to be addressed to print 3D electrodes, maintaining an optimal trade-off between electrochemical and mechanical performances. Herein, we report the first demonstration of 3D printed Si-based electrodes fabricated using a simple and cost-effective fused deposition modelling (FDM) method, and implemented as anodes in Li-ion batteries. To fulfil the printability requirement while maximizing the electrochemical performance, the composition of the FDM filament has been engineered using polylactic acid as the host polymeric matrix, a mixture of carbon black-doped polypyrrole and wet-jet milling exfoliated few-layer graphene flakes as conductive additives, and Si nanoparticles as the active material. The creation of a continuous conductive network and the control of the structural properties at the nanoscale enabled the design and realization of flexible 3D printed anodes, reaching a specific capacity up to ∼345 mA h g-1 at the current density of 20 mA g-1, together with a capacity retention of 96% after 350 cycles. The obtained results are promising for the fabrication of flexible polymeric-based 3D energy storage devices to meet the challenges ahead for the design of next-generation electronic devices.

13.
Mater Des ; 192: 108742, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32394995

RESUMEN

Glioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, characterized by rapid progression, resistance to treatments, and low survival rates; the development of a targeted treatment for this disease is still today an unattained objective. Among the different strategies developed in the latest few years for the targeted delivery of nanotherapeutics, homotypic membrane-membrane recognition is one of the most promising and efficient. In this work, we present an innovative drug-loaded nanocarrier with improved targeting properties based on the homotypic recognition of GBM cells. The developed nanoplatform consists of boron nitride nanotubes (BNNTs) loaded with doxorubicin (Dox) and coated with cell membranes (CM) extracted from GBM cells (Dox-CM-BNNTs). We demonstrated as Dox-CM-BNNTs are able to specifically target and kill GBM cells in vitro, leaving unaffected healthy brain cells, upon successful crossing an in vitro blood-brain barrier model. The excellent targeting performances of the nanoplatform can be ascribed to the protein component of the membrane coating, and proteomic analysis of differently expressed membrane proteins present on the CM of GBM cells and of healthy astrocytes allowed the identification of potential candidates involved in the process of homotypic cancer cell recognition.

14.
ACS Appl Mater Interfaces ; 12(26): 29037-29055, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32459082

RESUMEN

Glioblastoma multiforme is the most aggressive brain tumor, due to its high invasiveness and genetic heterogeneity. Moreover, the blood-brain barrier prevents many drugs from reaching a therapeutic concentration at the tumor site, and most of the chemotherapeutics lack in specificity toward cancer cells, accumulating in both healthy and diseased tissues, with severe side effects. Here, we present in vitro investigations on lipid-based nanovectors encapsulating a drug, nutlin-3a, and superparamagnetic iron oxide nanoparticles, to combine the proapoptotic action of the drug and the hyperthermia mediated by superparamagnetic iron oxide nanoparticles stimulated with an alternating magnetic field. The nanovectors are functionalized with the peptide angiopep-2 to induce receptor-mediated transcytosis through the blood-brain barrier and to target a receptor overexpressed by glioma cells. The glioblastoma multiforme targeting efficiency and the blood-brain barrier crossing abilities were tested through in vitro fluidic models, where different human cell lines were placed to mimic the tumor microenvironment. These nanovectors successfully cross the blood-brain barrier model, maintaining their targeting abilities for glioblastoma multiforme with minimal interaction with healthy cells. Moreover, we showed that nanovector-assisted hyperthermia induces a lysosomal membrane permeabilization that not only initiates a caspase-dependent apoptotic pathway, but also enhances the anticancer efficacy of the drug.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Lisosomas/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Línea Celular Tumoral , Compuestos Férricos/química , Humanos , Imidazoles/química , Nanopartículas/química , Péptidos/química , Piperazinas/química
15.
Polymers (Basel) ; 12(4)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316645

RESUMEN

A versatile and straightforward route to produce polymer foams with functional surface through their decoration with gold and palladium nanoparticles is proposed. Melamine foams, used as polymeric porous substrates, are first covered with a uniform coating of polydimethylsiloxane, thin enough to assure the preservation of their original porous structure. The polydimethylsiloxane layer allows the facile in-situ formation of metallic Au and Pd nanoparticles with sizes of tens of nanometers directly on the surface of the struts of the foam by the direct immersion of the foams into gold or palladium precursor solutions. The effect of the gold and palladium precursor concentration, as well as the reaction time with the foams, to the amount and sizes of the nanoparticles synthesized on the foams, was studied and the ideal conditions for an optimized functionalization were defined. Gold and palladium contents of about 1 wt.% were achieved, while the nanoparticles were proven to be stably adhered to the foam, avoiding potential risks related to their accidental release.

16.
Materials (Basel) ; 13(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941026

RESUMEN

Light emitting diodes (LED) based on halide perovskite nanocrystals (NC) have received widespread attention in recent years. In particular, LEDs based on CsPbBr3 NCs were the object of special interest. Here, we report for the first time green LED based on CsPbBr3 NCs treated with ammonium thiocyanate solution before purification with polar solvent. The champion device fabricated based on the treated CsPbBr3 NCs showed high efficiency and high stability during operation as well as during storage. A study on morphology and current distribution of NC films under applied voltages was carried out by conductive atomic force microscopy, giving a hint on efficiency roll-off. The current work provides a facile way to treat sensitive perovskite NCs and to fabricate perovskite NC-based LED with high stability. Moreover, the results shed new light on the relation between film morphology and device performance and on the possible mechanism of efficiency roll-off in NC LED.

17.
Chem Mater ; 32(24): 10641-10652, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33384476

RESUMEN

Various strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX3 perovskite NCs composed of two different M2+ cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCd x Pb1-x Br3 NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden-Popper phases (RP phases). The RP domains spontaneously transform into pure orthorhombic perovskite ones upon NC aging, and the emission color of the NCs shifts from blue to green over days. On the other hand, postsynthesis ligand exchange with various Cs-carboxylate or ammonium bromide salts, right after NC synthesis, provides monocrystalline NCs with cubic phase, highlighting the metastability of RP domains. When NCs are treated with Cs-carboxylates (including Cs-oleate), most of the Cd2+ ions are expelled from NCs upon aging, and the NCs phase evolves from cubic to orthorhombic and their emission color changes from blue to green. Instead, when NCs are coated with ammonium bromides, the loss of Cd2+ ions is suppressed and the NCs tend to retain their blue emission (both in colloidal dispersions and in electroluminescent devices), as well as their cubic phase, over time. The improved compositional and structural stability in the latter cases is ascribed to the saturation of surface vacancies, which may act as channels for the expulsion of Cd2+ ions from NCs.

18.
ACS Appl Mater Interfaces ; 10(18): 16095-16104, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29688691

RESUMEN

A new and straightforward single-step route to decorate melamine foams with silver nanoparticles (ME/Ag) is proposed. Uniform coatings of silver nanoparticles with diameters less than 10 nm are formed in situ directly on the struts surface of the foams, after their dipping in an AgNO3 solution. We prove that the nanoparticles are stably adhered on the foams, and that their amount can be directly controlled by the concentration of the AgNO3 solution and the dipping time. Following this production route, ME/Ag foams can be obtained with silver content ranging between 0.2 and 18.6 wt % and excellent antibacterial performance, making them appropriate for various applications. Herein we explore the possibility to use them as antibacterial filters for water treatment, proving that they are able to remove completely Escherichia coli bacteria from water when filtered at flow rates up to 100 mL/h·cm2 due to the release of less than 1 ppm of Ag+ ions by the foams. No bacterial regrowth was observed after further dilution of the treated water, to arrive below the safety threshold of Ag+ for drinking water (0.1 ppm), demonstrating the excellent bactericide performance of the ME/Ag filters.


Asunto(s)
Triazinas/química , Antibacterianos , Nanopartículas del Metal , Plata
19.
Nanomaterials (Basel) ; 7(4)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28417912

RESUMEN

The method of electrospinning was used to create nanofibers made of cellulose acetate (CA) and essential oils (EOs). CA polymer at 15% w/v was dissolved in acetone and then 1% or 5% v/v of EOs was added to the polymer solution. The utilized essential oils were rosemary and oregano oils. Then, the CA/EOs in acetone solution were electrospun, creating micro/nanofibers, approximately 700-1500 nm in diameter. Raman spectroscopy was used to detect the attachment of the EOs in the CA electrospun fibers (ESFs). Scanning electron microscopy was used to study the morphology, topography and dimensions of the ESFs. The formed CA/EOs ESFs are found to have good antimicrobial properties against three common microbial species, frequently found in difficult to treat infections: Bacteria species Staphylococcus aureus, Escherichia coli and the yeast Candida albicans. ESFs with 5% v/v oregano oil with respect to the initial solution, showed the best antimicrobial and anti-biofilm effects due to the potency of this EO against bacteria and fungi, especially for Escherichia coli and Candida albicans. This work describes an effective and simple method to prepare CA/EOs ESFs and opens up many new applications of micro/nanofibers such as improved antimicrobial wound dressings, anti-biofilm surfaces, sensors and packaging alternatives.

20.
Materials (Basel) ; 9(10)2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28773928

RESUMEN

Copper nanoparticles have been synthesized in ethylene glycol (EG) using copper sulphate as a precursor and vanadium sulfate as an atypical reductant being active at room temperature. We have described a technique for a relatively simple preparation of such a reagent, which has been electrolytically produced without using standard procedures requiring an inert atmosphere and a mercury cathode. Several stabilizing agents have been tested and cationic capping agents have been discarded owing to the formation of complex compounds with copper ions leading to insoluble phases contaminating the metallic nanoparticles. The elemental copper nanoparticles, stabilized with polyvinylpyrrolidone (PVP) and sodium dodecyl sulphate (SDS), have been characterized for composition by energy dispersive X-ray spectroscopy (EDS), and for size by dynamic light scattering (DLS), and transmission electron microscopy (TEM), giving a size distribution in the range of 40-50 nm for both stabilizing agents. From a methodological point of view, the process described here may represent an alternative to other wet-chemical techniques for metal nanoparticle synthesis in non-aqueous media based on conventional organic or inorganic reductants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...