Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709683

RESUMEN

Plants respond to increased CO2 concentrations through stomatal closure, which can contribute to increased water use efficiency. Grasses display faster stomatal responses than eudicots due to dumbbell-shaped guard cells flanked by subsidiary cells working in opposition. However, forward genetic screening for stomatal CO2 signal transduction mutants in grasses has yet to be reported. The grass model Brachypodium distachyon is closely related to agronomically important cereal crops, sharing largely collinear genomes. To gain insights into CO2 control mechanisms of stomatal movements in grasses, we developed an unbiased forward genetic screen with an EMS-mutagenized Brachypodium distachyon M5 generation population using infrared imaging to identify plants with altered leaf temperatures at elevated CO2. Among isolated mutants, a "chill1" mutant exhibited cooler leaf temperatures than wildtype Bd21-3 parent control plants after exposure to increased [CO2]. chill1 plants showed strongly impaired high CO2-induced stomatal closure despite retaining a robust abscisic acid-induced stomatal closing response. Through bulked segregant whole-genome-sequencing analyses followed by analyses of further backcrossed F4 generation plants and generation and characterization of sodium-azide and CRISPR-cas9 mutants, chill1 was mapped to a protein kinase, Mitogen-Activated Protein Kinase 5 (BdMPK5). The chill1 mutation impaired BdMPK5 protein-mediated CO2/HCO3- sensing together with the High Temperature 1 (HT1) Raf-like kinase in vitro. Furthermore, AlphaFold2-directed structural modeling predicted that the identified BdMPK5-D90N chill1 mutant residue is located at the interface of BdMPK5 with the BdHT1 Raf-like kinase. BdMPK5 is a key signaling component that mediates CO2-induced stomatal movements and is proposed to function as a component of the primary CO2 sensor in grasses.

2.
Theor Appl Genet ; 117(4): 555-63, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18528675

RESUMEN

Brachypodium distachyon is being developed as a model system to study temperate cereals and forage grasses. We have begun to investigate its utility to understand seed development and grain filling by identifying the major seed storage proteins in a diploid accession Bd21. With the use of ID SDS-PAGE and mass spectrometry we detected seven major storage protein bands, six of which were identified as globulins. A subset of the major seed proteins isolated from three hexaploid accessions, Bd4, Bd14 and Bd17 were also identified as globulins. Several Brachypodium cDNAs clones encoding globulin were completely sequenced. Two types of globulin genes were identified, Bd.glo1 and Bd.glo2, which are similar to maize 7S and oat 12S globulins, respectively. The derived polypeptide sequences of the globulins contain a typical signal peptide sequence in their polypeptide N-termini and two cupin domains. Bd.glo1 is encoded by a single copy gene, whereas, Bd.glo2 belongs to a gene family.


Asunto(s)
Globulinas/genética , Globulinas/aislamiento & purificación , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Poaceae/química , Poaceae/genética , Secuencia de Aminoácidos , ADN de Plantas/genética , Evolución Molecular , Datos de Secuencia Molecular , Poaceae/clasificación , Semillas/química , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
3.
Plant Mol Biol ; 63(5): 651-68, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17211515

RESUMEN

The expression of 7,835 genes in developing wheat caryopses was analyzed using cDNA arrays. Using a mixed model analysis of variance (ANOVA) method, 29% (2,237) of the genes on the array were identified to be differentially expressed at the 6 different time-points examined, which covers the developmental stages from coenocytic endosperm to physiological maturity. Comparison of genes differentially expressed between two time-points revealed a dynamic transcript accumulation profile with major re-programming events that occur at 3-7, 7-14 and 21-28 DPA. A k-means clustering algorithm grouped the differentially expressed genes into 10 clusters, revealing co-expression of genes involved in the same pathway such as carbohydrate and protein synthesis or preparation for desiccation. Functional annotation of genes that show peak expression at specific time-points correlated with the developmental events associated with the respective stages. Results provide information on the temporal expression during caryopsis development for a significant number of differentially expressed genes with unknown function.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos , Transcripción Genética , Triticum/genética , ADN Complementario/genética , ADN de Plantas/genética , Perfilación de la Expresión Génica , Marcadores Genéticos , Hibridación de Ácido Nucleico , ARN de Planta/genética
4.
J Appl Genet ; 47(4): 287-302, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17132893

RESUMEN

Among the cereals, wheat is the most widely grown geographically and is part of the staple diet in much of the world. Understanding how the cereal endosperm develops and functions will help generate better tools to manipulate grain qualities important to end-users. We used a genomics approach to identify and characterize genes that are expressed in the wheat endosperm. We analyzed the 17,949 publicly available wheat endosperm EST sequences to identify genes involved in the biological processes that occur within this tissue. Clustering and assembly of the ESTs resulted in the identification of 6,187 tentative unique genes, 2,358 of which formed contigs and 3,829 remained as singletons. A BLAST similarity search against the NCBI non-redundant sequence database revealed abundant messages for storage proteins, putative defense proteins, and proteins involved in starch and sucrose metabolism. The level of abundance of the putatively identified genes reflects the physiology of the developing endosperm. Half of the identified genes have unknown functions. Approximately 61% of the endosperm ESTs has been tentatively mapped in the hexaploid wheat genome. Using microarrays for global RNA profiling, we identified endosperm genes that are specifically up regulated in the developing grain.


Asunto(s)
Genoma de Planta , Transcripción Genética , Triticum/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Genes de Plantas , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Triticum/embriología , Triticum/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA