Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Psychiatry ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418578

RESUMEN

The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.

2.
Front Neurosci ; 17: 1154446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144098

RESUMEN

The dihydropyrimidinase-like (DPYSL) proteins, also designated as the collapsin response mediators (CRMP) proteins, constitute a family of five cytosolic phosphoproteins abundantly expressed in the developing nervous system but down-regulated in the adult mouse brain. The DPYSL proteins were initially identified as effectors of semaphorin 3A (Sema3A) signaling and consequently involved in regulation of growth cone collapse in young developing neurons. To date, it has been established that DPYSL proteins mediate signals for numerous intracellular/extracellular pathways and play major roles in variety of cellular process including cell migration, neurite extension, axonal guidance, dendritic spine development and synaptic plasticity through their phosphorylation status. The roles of DPYSL proteins at early stages of brain development have been described in the past years, particularly for DPYSL2 and DPYSL5 proteins. The recent characterization of pathogenic genetic variants in DPYSL2 and in DPYSL5 human genes associated with intellectual disability and brain malformations, such as agenesis of the corpus callosum and cerebellar dysplasia, highlighted the pivotal role of these actors in the fundamental processes of brain formation and organization. In this review, we sought to establish a detailed update on the knowledge regarding the functions of DPYSL genes and proteins in brain and to highlight their involvement in synaptic processing in later stages of neurodevelopment, as well as their particular contribution in human neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD) and intellectual disability (ID).

3.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674783

RESUMEN

The ubiquitin pathway, one of the main actors regulating cell signaling processes and cellular protein homeostasis, is directly involved in the pathophysiology of amyotrophic lateral sclerosis (ALS). We first analyzed, by a next-generation sequencing (NGS) strategy, a series of genes of the ubiquitin pathway in two cohorts of familial and sporadic ALS patients comprising 176 ALS patients. We identified several pathogenic variants in different genes of this ubiquitin pathway already described in ALS, such as FUS, CCNF and UBQLN2. Other variants of interest were discovered in new genes studied in this disease, in particular in the HECW1 gene. We have shown that the HECT E3 ligase called NEDL1, encoded by the HECW1 gene, is expressed in neurons, mainly in their somas. Its overexpression is associated with increased cell death in vitro and, very interestingly, with the cytoplasmic mislocalization of TDP-43, a major protein involved in ALS. These results give new support for the role of the ubiquitin pathway in ALS, and suggest further studies of the HECW1 gene and its protein NEDL1 in the pathophysiology of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Neuronas/metabolismo , Transducción de Señal/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo
4.
Mol Psychiatry ; 28(2): 801-809, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36434055

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Embarazo , Femenino , Adolescente , Adulto , Masculino , Ratas , Animales , Niño , Ácido Glutámico , Encéfalo , Ácido Valproico , Sinapsis
5.
Biomedicines ; 10(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36551904

RESUMEN

Major progress has been made over the last decade in identifying novel genes involved in neurodevelopmental disorders, although the task of elucidating their corresponding molecular and pathophysiological mechanisms, which are an essential prerequisite for developing therapies, has fallen far behind. We selected 45 genes for intellectual disabilities to generate and characterize mouse models. Thirty-nine of them were based on the frequency of pathogenic variants in patients and literature reports, with several corresponding to de novo variants, and six other candidate genes. We used an extensive screen covering the development and adult stages, focusing specifically on behaviour and cognition to assess a wide range of functions and their pathologies, ranging from basic neurological reflexes to cognitive abilities. A heatmap of behaviour phenotypes was established, together with the results of selected mutants. Overall, three main classes of mutant lines were identified based on activity phenotypes, with which other motor or cognitive deficits were associated. These data showed the heterogeneity of phenotypes between mutation types, recapitulating several human features, and emphasizing the importance of such systematic approaches for both deciphering genetic etiological causes of ID and autism spectrum disorders, and for building appropriate therapeutic strategies.

6.
Hum Mol Genet ; 31(19): 3325-3340, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35604360

RESUMEN

Intellectual disability (ID) is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for ID to different centers. Whereas, until now, SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider and also includes non-syndromic ID without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in Human Embryonic Kidney 293T (HEK293T) cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalization of SEMA6B protein in HEK293T cells and to a reduced spine density owing to loss of mature spines in neuronal cultures. Sema6b knockdown also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knockdown of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with ID and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation and in axon guidance. This study adds SEMA6B to the list of ID-related genes.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Semaforinas , Animales , Orientación del Axón , Embrión de Pollo , Espinas Dendríticas , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Semaforinas/genética
7.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409239

RESUMEN

The ubiquitin pathway regulates the function of many proteins and controls cellular protein homeostasis. In recent years, it has attracted great interest in neurodevelopmental and neurodegenerative diseases. Here, we have presented the first review on the roles of the 9 proteins of the HECT E3 ligase NEDD4 subfamily in the development and function of neurons in the central nervous system (CNS). We discussed their regulation and their direct or indirect involvement in neurodevelopmental diseases, such as intellectual disability, and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease or Amyotrophic Lateral Sclerosis. Further studies on the roles of these proteins, their regulation and their targets in neurons will certainly contribute to a better understanding of neuronal function and dysfunction, and will also provide interesting information for the development of therapeutics targeting them.


Asunto(s)
Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
Genes (Basel) ; 13(2)2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205231

RESUMEN

In our previous study, in which array CGH was used on 19 Lebanese ASD subjects and their parents, we identified rare copy number variants (CNVs) in 14 subjects. The five remaining subjects did not show any CNVs related to autism spectrum disorders (ASD). In the present complementary study, we applied whole-exome sequencing (WES), which allows the identification of rare genetic variations such as single nucleotide variations and small insertions/deletions, to the five negative CNV subjects. After stringent filtering of initial data on the five families, three novel genes potentially related to neurodevelopment were identified, including a de novo mutation in the MIS18BP1 gene. In addition, genes already known to be related to ASD contained sequence variations. Our findings outline the potential involvement of the novel de novo mutation in the MIS18BP1 gene in the genetic etiology and pathophysiology of ASD and highlights the genetic complexity of these disorders. Further studies with larger cohorts of subjects are needed to confirm these observations, and functional analyses need to be performed to understand the precise pathophysiology in these cases.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , Exoma/genética , Humanos , Secuenciación del Exoma
9.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051358

RESUMEN

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Asunto(s)
Proteína BRCA1/genética , Mutación de Línea Germinal , Mutación con Pérdida de Función , Mutación Missense , Trastornos del Neurodesarrollo/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Adolescente , Proteína BRCA1/inmunología , Niño , Preescolar , Cromatina/química , Cromatina/inmunología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/inmunología , Familia , Femenino , Regulación de la Expresión Génica , Heterocigoto , Histonas/genética , Histonas/inmunología , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/inmunología , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/inmunología , Trastornos del Neurodesarrollo/patología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Linfocitos T/inmunología , Linfocitos T/patología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/inmunología , Ubiquitina/genética , Ubiquitina/inmunología , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación
11.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894126

RESUMEN

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Cerebelo/anomalías , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Adulto , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Hidrolasas/química , Hidrolasas/genética , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Masculino , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Trastornos del Neurodesarrollo/diagnóstico por imagen , Tubulina (Proteína)/metabolismo , Adulto Joven
12.
Hum Mutat ; 42(7): 848-861, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33856728

RESUMEN

The X-linked PTCHD1 gene, encoding a synaptic membrane protein, has been involved in neurodevelopmental disorders with the description of deleterious genomic microdeletions or truncating coding mutations. Missense variants were also identified, however, without any functional evidence supporting their pathogenicity level. We investigated 13 missense variants of PTCHD1, including eight previously described (c.152G>A,p.(Ser51Asn); c.217C>T,p.(Leu73Phe); c.517A>G,p.(Ile173Val); c.542A>C,p.(Lys181Thr); c.583G>A,p.(Val195Ile); c.1076A>G,p.(His359Arg); c.1409C>A,p.(Ala470Asp); c.1436A>G,p.(Glu479Gly)), and five novel ones (c.95C>T,p.(Pro32Leu); c.95C>G,p.(Pro32Arg); c.638A>G,p.(Tyr213Cys); c.898G>C,p.(Gly300Arg); c.928G>C,p.(Ala310Pro)) identified in male patients with intellectual disability (ID) and/or autism spectrum disorder (ASD). Interestingly, several of these variants involve amino acids localized in structural domains such as transmembrane segments. To evaluate their potentially deleterious impact on PTCHD1 protein function, we performed in vitro overexpression experiments of the wild-type and mutated forms of PTCHD1-GFP in HEK 293T and in Neuro-2a cell lines as well as in mouse hippocampal primary neuronal cultures. We found that six variants impaired the expression level of the PTCHD1 protein, and were retained in the endoplasmic reticulum suggesting abnormal protein folding. Our functional analyses thus provided evidence of the pathogenic impact of missense variants in PTCHD1, which reinforces the involvement of the PTCHD1 gene in ID and in ASD.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Proteínas de la Membrana , Animales , Trastorno del Espectro Autista/genética , Membrana Celular/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Mutación Missense
13.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670299

RESUMEN

Protein aggregates in affected motor neurons are a hallmark of amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to their formation remain incompletely understood. Oxidative stress associated with age, the major risk factor in ALS, contributes to this neurodegeneration in ALS. We show that several genes coding for enzymes of the ubiquitin and small ubiquitin-related modifier (SUMO) pathways exhibit altered expression in motor neuronal cells exposed to oxidative stress, such as the CCNF gene mutated in ALS patients. Eleven of these genes were further studied in conditions combining oxidative stress and the expression of an ALS related mutant of the superoxide dismutase 1 (SOD1) gene. We observed a combined effect of these two environmental and genetic factors on the expression of genes, such as Uhrf2, Rbx1, Kdm2b, Ube2d2, Xaf1, and Senp1. Overall, we identified dysregulations in the expression of enzymes of the ubiquitin and SUMO pathways that may be of interest to better understand the pathophysiology of ALS and to protect motor neurons from oxidative stress and genetic alterations.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Regulación de la Expresión Génica , Modelos Neurológicos , Neuronas Motoras/metabolismo , Estrés Oxidativo , Proteína SUMO-1/biosíntesis , Superóxido Dismutasa-1/metabolismo , Ubiquitina/biosíntesis , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Línea Celular , Humanos , Neuronas Motoras/patología , Mutación , Proteína SUMO-1/genética , Superóxido Dismutasa-1/genética , Ubiquitina/genética
14.
Hum Genet ; 140(6): 885-896, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33417013

RESUMEN

The 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative. Here, we report de novo heterozygous truncating variants in the HIRA (Histone cell cycle regulation defective, S. Cerevisiae, homolog of, A) gene associated with a neurodevelopmental disorder in two unrelated patients. HIRA is located within the commonly deleted region of the 22q11DS and encodes a histone chaperone that regulates neural progenitor proliferation and neurogenesis, and that belongs to the WD40 Repeat (WDR) protein family involved in brain development and neuronal connectivity. To address the specific impact of HIRA haploinsufficiency in the neurodevelopmental phenotype of 22q11DS, we combined Hira knock-down strategies in developing mouse primary hippocampal neurons, and the direct study of brains from heterozygous Hira+/- mice. Our in vitro analyses revealed that Hira gene is mostly expressed during neuritogenesis and early dendritogenesis stages in mouse total brain and in developing primary hippocampal neurons. Moreover, shRNA knock-down experiments showed that a twofold decrease of endogenous Hira expression level resulted in an impaired dendritic growth and branching in primary developing hippocampal neuronal cultures. In parallel, in vivo analyses demonstrated that Hira+/- mice displayed subtle neuroanatomical defects including a reduced size of the hippocampus, the fornix and the corpus callosum. Our results suggest that HIRA haploinsufficiency would likely contribute to the complex pathophysiology of the neurodevelopmental phenotype of 22q11DS by impairing key processes in neurogenesis and by causing neuroanatomical defects during cerebral development.


Asunto(s)
Proteínas de Ciclo Celular/genética , Síndrome de DiGeorge/genética , Haploinsuficiencia , Chaperonas de Histonas/genética , Trastornos del Neurodesarrollo/genética , Plasticidad Neuronal/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Niño , Preescolar , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Síndrome de DiGeorge/metabolismo , Síndrome de DiGeorge/patología , Femenino , Fórnix/metabolismo , Fórnix/patología , Expresión Génica , Heterocigoto , Hipocampo/metabolismo , Hipocampo/patología , Chaperonas de Histonas/antagonistas & inhibidores , Chaperonas de Histonas/deficiencia , Chaperonas de Histonas/metabolismo , Humanos , Ratones , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Neurogénesis/genética , Neuronas/patología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo
15.
J Neurol Neurosurg Psychiatry ; 92(5): 479-484, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33408239

RESUMEN

OBJECTIVES: To determine whether the familial clustering of amyotrophic lateral sclerosis (ALS) cases and the phenotype of the disease may help identify the pathogenic genes involved. METHODS: We conducted a targeted next-generation sequencing analysis on 235 French familial ALS (FALS), unrelated probands to identify mutations in 30 genes linked to the disease. The genealogy, that is, number of cases and generations with ALS, gender, age, site of onset and the duration of the disease were analysed. RESULTS: Regarding the number of generations, 49 pedigrees had only one affected generation, 152 had two affected generations and 34 had at least three affected generations. Among the 149 pedigrees (63.4%) for which a deleterious variant was found, an abnormal G4C2 expansion in C9orf72 was found in 98 cases as well as SOD1, TARBP or FUS mutations in 30, 9 and 7 cases, respectively. Considering pedigrees from the number of generations, abnormal G4C2 expansion in C9orf72 was more frequent in pedigrees with pairs of affected ALS cases, which represented 65.2% of our cohort. SOD1 mutation involved all types of pedigrees. No TARDBP nor FUS mutation was present in monogenerational pedigrees. TARDBP mutation predominated in bigenerational pedigrees with at least three cases and FUS mutation in multigenerational pedigrees with more than seven cases, on average, and with an age of onset younger than 45 years. CONCLUSION: Our results suggest that familial clustering, phenotypes and genotypes are interconnected in FALS, and thus it might be possible to target the genetic screening from the familial architecture and the phenotype of ALS cases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Mutación , Anciano , Análisis por Conglomerados , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Femenino , Pruebas Genéticas , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa-1/genética
16.
Neurobiol Aging ; 97: 148.e1-148.e7, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32843153

RESUMEN

More than 40 human diseases, mainly diseases affecting the central nervous system, are caused by the expansion of unstable nucleotide repeats. Repeats of sequences like (CAG)n present in different genes can be responsible for various diseases of the central nervous system. An expanded hexanucleotide repeat (GGGGCC)n in the C9ORF72 gene has been characterized as the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar dementia. In this study, we performed a genome-wide analysis in the human genome and identified 74 genes containing this precise hexanucleotide repeat, with a preference for a location in exon 1 or intron 1, similar to the C9ORF72 gene. A total of 36 of these 74 genes may be of interest as candidates in neurodevelopmental or neurodegenerative diseases, based on their function.


Asunto(s)
Proteína C9orf72/genética , Sistema Nervioso Central/metabolismo , Expansión de las Repeticiones de ADN/genética , Expresión Génica , Estudios de Asociación Genética , Genoma Humano/genética , Enfermedades Neurodegenerativas/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/metabolismo , Demencia Frontotemporal/genética , Humanos
17.
Genet Med ; 23(2): 352-362, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33106617

RESUMEN

PURPOSE: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. METHODS: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. RESULTS: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly. CONCLUSION: We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Proteína Fosfatasa 2/genética , Factores de Transcripción
18.
Artículo en Inglés | MEDLINE | ID: mdl-32301341

RESUMEN

Cytoplasmic aggregation of TAR-DNA binding protein (TDP-43) in Amyotrophic Lateral Sclerosis (ALS) and fronto-temporal lobar dementia (FTLD) is associated with post-translational modifications (PTM) and delocalization. Studies on postmortem brains of ALS and FTLD patients showed the existence of TDP-43 fragments that end at position N291. We report a new heterozygous mutation p.N291H in a familial case of ALS. Expression of the mutant protein in cell lines and primary motor neurons induces aggregate formation in the cytoplasm and reduces cell viability. The discovery of mutations at cleavage sites in TDP-43 in patients, which we reviewed here, is valuable for understanding the true role of the various TDP-43 fragments identified in patients and thus, for developing effective targeted therapies for ALS and FTLD treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Encéfalo/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Neuronas Motoras/metabolismo , Mutación/genética
19.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109418

RESUMEN

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo/genética , Fenotipo , Estudios de Cohortes , Heterogeneidad Genética , Humanos , Síndrome
20.
Hum Mutat ; 40(11): 2021-2032, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31184401

RESUMEN

The X-linked NLGN3 gene, encoding a postsynaptic cell adhesion molecule, was involved in a nonsyndromic monogenic form of autism spectrum disorder (ASD) by the description of one unique missense variant, p.Arg451Cys (Jamain et al. 2003). We investigated here the pathogenicity of additional missense variants identified in two multiplex families with intellectual disability (ID) and ASD: c.1789C>T, p.Arg597Trp, previously reported by our group (Redin et al. 2014) and present in three affected cousins and c.1540C>T, p.Pro514Ser, identified in two affected brothers. Overexpression experiments in HEK293 and HeLa cell lines revealed that both variants affect the level of the mature NLGN3 protein, its localization at the plasma membrane and its presence as a cleaved form in the extracellular environment, even more drastically than what was reported for the initial p.Arg451Cys mutation. The variants also induced an unfolded protein response, probably due to the retention of immature NLGN3 proteins in the endoplasmic reticulum. In comparison, the c.1894A>G, p.Ala632Thr and c.1022T>C, p.Val341Ala variants, present in males from the general population, have no effect. Our report of two missense variants affecting the normal localization of NLGN3 in a total of five affected individuals reinforces the involvement of the NLGN3 gene in a neurodevelopmental disorder characterized by ID and ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular Neuronal/genética , Disfunción Cognitiva/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Trastorno del Espectro Autista/diagnóstico , Moléculas de Adhesión Celular Neuronal/metabolismo , Disfunción Cognitiva/diagnóstico , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación Missense , Proteínas del Tejido Nervioso/metabolismo , Linaje , Fenotipo , Conformación Proteica , Transporte de Proteínas , Inactivación del Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...