Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(5): 3200-3215, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855662

RESUMEN

The therapeutic application of blue light (380 - 500nm) has garnered considerable attention in recent years as it offers a non-invasive approach for the management of prevalent skin conditions including acne vulgaris and atopic dermatitis. These conditions are often characterised by an imbalance in the microbial communities that colonise our skin, termed the skin microbiome. In conditions including acne vulgaris, blue light is thought to address this imbalance through the selective photoexcitation of microbial species expressing wavelength-specific chromophores, differentially affecting skin commensals and thus altering the relative species composition. However, the abundance and diversity of these chromophores across the skin microbiota remains poorly understood. Similarly, devices utilised for studies are often bulky and poorly characterised which if translated to therapy could result in reduced patient compliance. Here, we present a clinically viable micro-LED illumination platform with peak emission 450 nm (17 nm FWHM) and adjustable irradiance output to a maximum 0.55 ± 0.01 W/cm2, dependent upon the concentration of titanium dioxide nanoparticles applied to an accompanying flexible light extraction substrate. Utilising spectrometry approaches, we characterised the abundance of prospective blue light chromophores across skin commensal bacteria isolated from healthy volunteers. Of the strains surveyed 62.5% exhibited absorption peaks within the blue light spectrum, evidencing expression of carotenoid pigments (18.8%, 420-483 nm; Micrococcus luteus, Kocuria spp.), porphyrins (12.5%, 402-413 nm; Cutibacterium spp.) and potential flavins (31.2%, 420-425 nm; Staphylococcus and Dermacoccus spp.). We also present evidence of the capacity of these species to diminish irradiance output when combined with the micro-LED platform and in turn how exposure to low-dose blue light causes shifts in observed absorbance spectra peaks. Collectively these findings highlight a crucial deficit in understanding how microbial chromophores might shape response to blue light and in turn evidence of a micro-LED illumination platform with potential for clinical applications.

2.
ACS Appl Nano Mater ; 7(8): 9159-9166, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38694721

RESUMEN

Luminescent supraparticles of colloidal semiconductor nanocrystals can act as microscopic lasers and are hugely attractive for biosensing, imaging, and drug delivery. However, biointerfacing these to increase functionality while retaining their main optical properties remains an unresolved challenge. Here, we propose and demonstrate red-emitting, silica-coated CdSxSe1-x/ZnS colloidal quantum dot supraparticles functionalized with a biotinylated photocleavable ligand. The success of each step of the synthesis is confirmed by scanning electron microscopy, energy dispersive X-ray and Fourier transform infrared spectroscopy, ζ-potential, and optical pumping measurements. The capture and release functionality of the supraparticle system is proven by binding to a neutravidin functionalized glass slide and subsequently cleaving off after UV-A irradiation. The biotinylated supraparticles still function as microlasers; e.g., a 9 µm diameter supraparticle has oscillating modes around 625 nm at a threshold of 58 mJ/cm2. This work is a first step toward using supraparticle lasers as enhanced labels for bionano applications.

3.
ACS Appl Opt Mater ; 1(11): 1836-1846, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38037651

RESUMEN

Supraparticle (SP) microlasers fabricated by the self-assembly of colloidal nanocrystals have great potential as coherent optical sources for integrated photonics. However, their deterministic placement for integration with other photonic elements remains an unsolved challenge. In this work, we demonstrate the manipulation and printing of individual SP microlasers, laying the foundation for their use in more complex photonic integrated circuits. We fabricate CdSxSe1-x/ZnS colloidal quantum dot (CQD) SPs with diameters from 4 to 20 µm and Q-factors of approximately 300 via an oil-in-water self-assembly process. Under a subnanosecond-pulse optical excitation at 532 nm, the laser threshold is reached at an average number of excitons per CQD of 2.6, with modes oscillating between 625 and 655 nm. Microtransfer printing is used to pick up individual CQD SPs from an initial substrate and move them to a different one without affecting their capability for lasing. As a proof of concept, a CQD SP is printed on the side of an SU-8 waveguide, and its modes are successfully coupled to the waveguide.

4.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833863

RESUMEN

The surface functionalisation of self-assembled colloidal quantum dot supraparticle lasers with a thrombin binding aptamer (TBA-15) has been demonstrated. The self-assembly of CdSSe/ZnS alloyed core/shell microsphere-shape CQD supraparticles emitting at 630 nm was carried out using an oil-in-water emulsion technique, yielding microspheres with an oleic acid surface and an average diameter of 7.3 ± 5.3 µm. Surface modification of the microspheres was achieved through a ligand exchange with mercaptopropionic acid and the subsequent attachment of TBA-15 using EDC/NHS coupling, confirmed by zeta potential and Fourier transform IR spectroscopy. Lasing functionality between 627 nm and 635 nm was retained post-functionalisation, with oleic acid- and TBA-coated microspheres exhibiting laser oscillation with thresholds as low as 4.10 ± 0.37 mJ·cm-2 and 7.23 ± 0.78 mJ·cm-2, respectively.


Asunto(s)
Aptámeros de Nucleótidos , Puntos Cuánticos , Aptámeros de Nucleótidos/química , Ácido Oléico , Luz , Rayos Láser
5.
Biomed Opt Express ; 14(3): 1107-1118, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36950244

RESUMEN

A fluorescence sensor with the capability for spatially multiplexed measurements utilizing smartphone detection is presented. Bioconjugated quantum dots are used as the fluorescent tag and are excited using a blue-emitting microLED (µLED). The 1-dimensional GaN µLED array is butt-coupled to one edge of the glass slide to take advantage of total internal reflection fluorescence (TIRF) principles. The bioassays on the top surface of the glass waveguide are excited and the resultant fluorescence is detected with the smartphone. The red, green, and blue channels of the digital image are utilized to spectrally separate the excitation light from the fluorescence for analysis. Using a biotin-functionalized glass slide as proof of principle, we have shown that streptavidin conjugated quantum dots can be detected down to a concentration of 8 nM.

6.
Acc Chem Res ; 52(6): 1665-1674, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117341

RESUMEN

One of the most desirable and advantageous attributes of organic materials chemistry is the ability to tune the molecular structure to achieve targeted physical properties. This can be performed to achieve specific values for the ionization potential or electron affinity of the material, the absorption and emission characteristics, charge transport properties, phase behavior, solubility, processability, and many other properties, which in turn can help push the limits of performance in organic semiconductor devices. A striking example is the ability to make subtle structural changes to a conjugated macromolecule to vary the absorption and emission properties of a generic chemical structure. In this Account, we demonstrate that target properties for specific photonic applications can be achieved from different types of semiconductor structures, namely, monodisperse star-shaped molecules, complex linear macromolecules, and conjugated polymers. The most appropriate material for any single application inevitably demands consideration of a trade-off of various properties; in this Account, we focus on applications such as organic lasers, electrogenerated chemiluminescence, hybrid light emitting diodes, and visible light communications. In terms of synthesis, atom and step economies are also important. The star-shaped structures consist of a core unit with 3 or 4 functional connection points, to which can be attached conjugated oligomers of varying length and composition. This strategy follows a convergent synthetic pathway and allows the isolation of target macromolecules in good yield, high purity, and absolute reproducibility. It is a versatile approach, providing a wide choice of constituent molecular units and therefore varying properties, while the products share many of the desirable attributes of polymers. Constructing linear conjugated macromolecules with multifunctionality can lead to complex synthetic routes and lower atom and step economies, inferior processability, and lower thermal or chemical stability, but these materials can be designed to provide a range of different targeted physical properties. Conventional conjugated polymers, as the third type of structure, often feature so-called "champion" properties. The synthetic challenge is mainly concerned with monomer synthesis, but the final polymerization sequence can be hard to control, leading to variable molecular weights and polydispersities and some degree of inconsistency in the properties of the same material between different synthetic batches. If a champion characteristic persists between samples, then the variation of other properties between batches can be tolerable, depending on the target application. In the case of polymers, we have chosen to study PPV-type polymers with bulky side groups that provide protection of their conjugated backbone from π-π stacking interactions. These polymers exhibit high photoluminescence quantum yields (PLQYs) in films and short radiative lifetimes and are an important benchmark to monodisperse star-shaped systems in terms of different absorption/emission regions. This Account therefore outlines the advantages and special features of monodisperse star-shaped macromolecules for photonic applications but also considers the two alternative classes of materials and highlights the pros and cons of each class of conjugated structure.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 67-70, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31945846

RESUMEN

A conformable device for wearable phototherapy applications is presented. The device consists of a 1 mm thick elastomeric membrane edge-lit by specially fabricated micro-sized LEDs. Nanoparticle based scattering films are utilized to extract light and a uniform emission of 15 µW/cm2 is reported over an area of 2 cm2.


Asunto(s)
Fototerapia , Dispositivos Electrónicos Vestibles
10.
Faraday Discuss ; 174: 369-81, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25254510

RESUMEN

Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.


Asunto(s)
Técnicas Biosensibles/instrumentación , Rayos Láser , Compuestos Orgánicos/química , Semiconductores , Coloides/química , Sustancias Luminiscentes/química , Estructura Molecular , Sondas de Ácido Nucleico/química , Puntos Cuánticos
11.
Biosens Bioelectron ; 54: 679-86, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24355421

RESUMEN

The first example of an all-organic oligofluorene truxene based distributed feedback laser for the detection of a specific protein-small molecule interaction is reported. The protein avidin was detected down to 1 µg mL(-1) using our biotin-labelled biosensor platform. This interaction was both selective and reversible when biotin was replaced with desthiobiotin. Avidin detection was not perturbed by Bovine Serum Albumin up to 50,000 µg mL(-1). Our biosensor offers a new detection platform that is both highly sensitive, modular and potentially re-usable.


Asunto(s)
Avidina/análisis , Avidina/metabolismo , Técnicas Biosensibles/instrumentación , Biotina/metabolismo , Fluorenos/química , Rayos Láser , Animales , Biotina/análogos & derivados , Biotinilación , Bovinos , Diseño de Equipo , Semiconductores , Sensibilidad y Especificidad , Albúmina Sérica Bovina/metabolismo
12.
Opt Lett ; 37(24): 5160-2, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23258038

RESUMEN

In this work, an organic composite polymer random laser (RL) operating underwater has been studied. The RL structure used in the test is a rod-shaped composite, formed by a mixture of an organic green light-emitting polymer and a UV transparent polymer matrix. RL action was sustained by both the multiple scattering and whispering-gallery-mode effect. The demonstration of RL action and the test of its operation lifetime in such an organic composite RL operating in water suggest the feasibility of its promising future applications in areas of underwater optical communications and/or remote optical sensing.

13.
Opt Express ; 19(4): 2996-3003, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21369124

RESUMEN

We report random laser action in a system where optical amplification is provided by colloidal quantum dots (CQDs). This system is obtained by depositing from solution CdSe/ZnS core-shell CQDs into rough micron-scale grooves fabricated on the surface of a glass substrate. The combination of CQD random packing and of disordered structures in the glass groove enables gain and multiple scattering. Upon optical excitation, random laser action is triggered in the system above a 25-mJ/cm2 threshold. Single-shot spectra were recorded to study the emission spectral characteristics and the results show the stability of the laser mode positions and the dominance of the modes close to the material gain maximum.

14.
Opt Express ; 18(25): 25535-45, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-21164899

RESUMEN

Mechanically flexible distributed feedback (DFB) lasers are fabricated by a low-cost approach using soft-lithography from a holographic master grating. The gain material is a star-shaped oligofluorene providing laser emission from 425 to 442 nm with a soft pump threshold at 14.4 µJ/cm (2.7 kW/cm). Encapsulation of the devices enables stable operation in ambient atmosphere at a 1/e degradation energy dosage of 53 J/cm.


Asunto(s)
Láseres de Semiconductores , Compuestos Orgánicos/química , Color , Diseño Asistido por Computadora , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo
15.
Opt Lett ; 32(19): 2831-3, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17909588

RESUMEN

We report a tunable, single-mode vertical cavity surface-emitting laser (VCSEL) format suitable for array operation, power scaling, fiber coupling, and operation in isolated environments such as those required by atom optics. The devices are fiber VCSELs, consisting of a semiconductor gain and mirror structure separated from a mirror-coated optical fiber by an air (or vacuum) gap. The gain structure has polymer microlenses fabricated on its surface, of characteristics suitable to focus the oscillating mode on both cavity mirrors, ensuring stable fundamental mode emission and high fiber coupling efficiency. We demonstrate such devices in continuous-wave operation at 1.03 microm at room temperature, with a single-mode tuning range of 13 nm, laser threshold as low as 2.5 mW, and a maximum fiber-coupled output power of 10 mW.

16.
Opt Express ; 15(15): 9341-6, 2007 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19547276

RESUMEN

We report a 1.055-mum microchip VECSEL array which uses a microlens-patterned diamond both as a heatspreader and as an array of concave output mirrors. This configuration, which is suitable for laser array operation, is here exploited to perform a systematic study of a set of microchip lasers with the same semiconductor structure but different cavity properties. The transverse mode selection of individual VECSELs is found to depend on the mode-matching conditions and on the microlens aperture size. Mode-matched single-device emission in the fundamental mode (M2~1.1) with pump-limited output power of 70 mW is demonstrated.

17.
Opt Express ; 14(15): 6858-63, 2006 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19516868

RESUMEN

This paper discusses the effect of slow-light in Vertical-Cavity Semiconductor Optical Amplifiers. A Fabry-Perot model is used to predict the group delay (GD) and GD-bandwidth performance of a VCSOA operated in reflection in the linear regime. It is shown that the GD depends on all cavity parameters while the GDxGD-bandwidth product only depends on the gain. Experimental demonstration with a 1300nm GaInNAs VCSOA is used to validate the model and demonstrate tunable GDs between 25 and 100 ps by varying the VCSOA gain. Experimental distortion of the signals induced by nonlinear effects is also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...