Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35184165

RESUMEN

Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.

2.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893831

RESUMEN

Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e., genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and small increases in predictive ability could be obtained for some traits when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation.


Asunto(s)
Malus , Genoma , Genómica/métodos , Genotipo , Malus/genética , Modelos Genéticos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Selección Genética
3.
Hortic Res ; 7(1): 189, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328447

RESUMEN

Breeding of apple is a long-term and costly process due to the time and space requirements for screening selection candidates. Genomics-assisted breeding utilizes genomic and phenotypic information to increase the selection efficiency in breeding programs, and measurements of phenotypes in different environments can facilitate the application of the approach under various climatic conditions. Here we present an apple reference population: the apple REFPOP, a large collection formed of 534 genotypes planted in six European countries, as a unique tool to accelerate apple breeding. The population consisted of 269 accessions and 265 progeny from 27 parental combinations, representing the diversity in cultivated apple and current European breeding material, respectively. A high-density genome-wide dataset of 303,239 SNPs was produced as a combined output of two SNP arrays of different densities using marker imputation with an imputation accuracy of 0.95. Based on the genotypic data, linkage disequilibrium was low and population structure was weak. Two well-studied phenological traits of horticultural importance were measured. We found marker-trait associations in several previously identified genomic regions and maximum predictive abilities of 0.57 and 0.75 for floral emergence and harvest date, respectively. With decreasing SNP density, the detection of significant marker-trait associations varied depending on trait architecture. Regardless of the trait, 10,000 SNPs sufficed to maximize genomic prediction ability. We confirm the suitability of the apple REFPOP design for genomics-assisted breeding, especially for breeding programs using related germplasm, and emphasize the advantages of a coordinated and multinational effort for customizing apple breeding methods in the genomics era.

4.
Mol Genet Genomics ; 295(6): 1443-1457, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32700103

RESUMEN

The apple is a highly perishable fruit after harvesting and, therefore, several storage technologies have been studied to provide the consumer market with a quality product with a longer shelf life. However, little is known about the apple genome that is submitted to the storage, and even less with the application of ripening inhibitors. Due to these factors, this study sought to elucidate the transcriptional profile of apple cultivate Gala stored in a controlled atmosphere (AC) treated and not treated with 1-methyl cyclopropene (1-MCP). Through the genetic mapping of the apple, applying the microarray technique, it was possible to verify the action of treatments on transcripts related to photosynthesis, carbohydrate metabolism, response to hormonal stimuli, nucleic acid metabolism, reduction of oxidation, regulation of transcription and metabolism of cell wall and lipids. The results showed that the transcriptional profile in the entire genome of the fruit showed significant differences in the relative expression of the gene, this in response to CA in the presence and absence of 1-MCP. It should be noted that the transcription genes involved in the anabolic pathway were only maintained after six months in fruits treated with 1-MCP. The data in this work suggests that the apple in the absence of 1-MCP begins to prepare its metabolism to mature, even during the storage period in AC. Meanwhile, in the presence of the inhibitor, the transcriptional profile of the fruit is similar to that at the time of harvest. It was also found that a set of genes that code for ethylene receptors, auxin homeostasis, MADS Box, and NAC transcription factors may be involved in the regulation of post-harvest ripening after storage and in the absence of 1-MCP.


Asunto(s)
Ciclopropanos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Almacenamiento de Alimentos , Frutas/crecimiento & desarrollo , Malus/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Transcripción/genética
5.
Sci Rep ; 10(1): 6180, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277099

RESUMEN

Superficial scald is one of the most serious postharvest physiological disorders that can affect apples after a prolonged cold storage period. This study investigated the impact of pre- and post-harvest climatic variations on superficial scald in a susceptible apple cultivar. Fruit batches with contrasting phenotypes for superficial scald incidence were identified among several years of "Granny Smith" fruit production. The "low scald" year pre-harvest climate was characterised by a warm period followed by a sudden decrease in temperature, playing the part of an in vivo acclimation to cold storage. This was associated with many abiotic stress responsive genes which were induced in fruit peel. In particular 48 Heat Shock Proteins (HSPs) and 5 Heat Shock transcription Factors (HSFs) were strongly induced at harvest when scald incidence was low. For "high scald" year, a post-harvest acclimation of 1 week was efficient in reducing scald incidence. Expression profiles of stress related genes were affected by the acclimation treatment and indicate fruit physiological adaptations to cold storage. The identified stress-responsive genes, and in particular HSPs, could be useful indicators of the fruit physiological status to predict the risk of scald occurrence as early as harvest.


Asunto(s)
Aclimatación/fisiología , Frío/efectos adversos , Conservación de Alimentos , Malus/fisiología , Enfermedades de las Plantas/prevención & control , Clima , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Choque Térmico/genética , Incidencia , Enfermedades de las Plantas/estadística & datos numéricos , Estrés Fisiológico , Factores de Transcripción/metabolismo
6.
Front Plant Sci ; 11: 8, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117359

RESUMEN

Superficial scald is a major physiological disorder in apple fruit that is induced by cold storage and is mainly expressed as brown necrotic patches on peel tissue. However, a global view of the gene-protein-metabolite interactome underlying scald prevention/sensitivity is currently missing. Herein, we have found for the first time that cold storage in an atmosphere enriched with ozone (O3) induced scald symptoms in 'Granny Smith' apple fruits during subsequent ripening at room temperature. In contrast, treatment with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) reversed this O3-induced scald effect. Amino acids, including branched-chain amino acids, were the most strongly induced metabolites in peel tissue of 1-MCP treated fruits. Proteins involved in oxidative stress and protein trafficking were differentially accumulated prior to and during scald development. Genes involved in photosynthesis, flavonoid biosynthesis and ethylene signaling displayed significant alterations in response to 1-MCP and O3. Analysis of regulatory module networks identified putative transcription factors (TFs) that could be involved in scald. Subsequently, a transcriptional network of the genes-proteins-metabolites and the connected TFs was constructed. This approach enabled identification of several genes coregulated by TFs, notably encoding glutathione S-transferase (GST) protein(s) with distinct signatures following 1-MCP and O3 treatments. Overall, this study is an important contribution to future functional studies and breeding programs for this fruit, aiding to the development of improved apple cultivars to superficial scald.

7.
BMC Plant Biol ; 20(1): 2, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898487

RESUMEN

BACKGROUND: Apple (Malus x domestica Borkh.) is one of the most important fruit tree crops of temperate areas, with great economic and cultural value. Apple cultivars can be maintained for centuries in plant collections through grafting, and some are thought to date as far back as Roman times. Molecular markers provide a means to reconstruct pedigrees and thus shed light on the recent history of migration and trade of biological materials. The objective of the present study was to identify relationships within a set of over 1400 mostly old apple cultivars using whole-genome SNP data (~ 253 K SNPs) in order to reconstruct pedigrees. RESULTS: Using simple exclusion tests, based on counting the number of Mendelian errors, more than one thousand parent-offspring relations and 295 complete parent-offspring families were identified. Additionally, a grandparent couple was identified for the missing parental side of 26 parent-offspring pairings. Among the 407 parent-offspring relations without a second identified parent, 327 could be oriented because one of the individuals was an offspring in a complete family or by using historical data on parentage or date of recording. Parents of emblematic cultivars such as 'Ribston Pippin', 'White Transparent' and 'Braeburn' were identified. The overall pedigree combining all the identified relationships encompassed seven generations and revealed a major impact of two Renaissance cultivars of French and English origin, namely 'Reinette Franche' and 'Margil', and one North-Eastern Europe cultivar from the 1700s, 'Alexander'. On the contrary, several older cultivars, from the Middle Ages or the Roman times, had no, or only single, identifiable offspring in the set of studied accessions. Frequent crosses between cultivars originating from different European regions were identified, especially from the nineteenth century onwards. CONCLUSIONS: The availability of over 1400 apple genotypes, previously filtered for genetic uniqueness and providing a broad representation of European germplasm, has been instrumental for the success of this large pedigree reconstruction. It enlightens the history of empirical selection and recent breeding of apple cultivars in Europe and provides insights to speed-up future breeding and selection.


Asunto(s)
Genoma de Planta , Malus/genética , Polimorfismo de Nucleótido Simple/genética , Cruzamiento , Europa (Continente) , Genotipo , Técnicas de Genotipaje/métodos , Linaje , Secuenciación Completa del Genoma
8.
Epigenomes ; 4(3)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34968286

RESUMEN

Apple skin color is an important trait for organoleptic quality. In fact, it has a major influence on consumer choice. Skin color is, thus, one of the most important criteria taken into account by breeders. For apples, most novel varieties are so-called "mutants" or "sports" that have been identified in clonal populations. Indeed, many "sports" exist that show distinct phenotypic differences compared to the varieties from which they originated. These differences affect a limited number of traits of economic importance, including skin color. Until recently, the detailed genetic or epigenetic changes resulting in heritable phenotypic changes in sports was largely unknown. Recent technological advances and the availability of several high-quality apple genomes now provide the bases to understand the exact nature of the underlying molecular changes that are responsible for the observed phenotypic changes observed in sports. The present review investigates the molecular nature of sports affected in apple skin color giving arguments in favor of the genetic or epigenetic explanatory models.

9.
Hortic Res ; 6: 59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30962944

RESUMEN

In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.

10.
Hortic Res ; 5: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29507735

RESUMEN

Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.

11.
Front Plant Sci ; 8: 1923, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176988

RESUMEN

Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.

12.
J Agric Food Chem ; 65(35): 7813-7826, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28771353

RESUMEN

Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes.


Asunto(s)
Etilenos/farmacología , Frutas/genética , Malus/genética , Proteínas de Plantas/genética , Frío , Frutas/efectos de los fármacos , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/efectos de los fármacos , Malus/metabolismo , Proteínas de Plantas/metabolismo , Transcripción Genética
13.
Nat Genet ; 49(7): 1099-1106, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28581499

RESUMEN

Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.


Asunto(s)
Metilación de ADN , ADN de Plantas/genética , Genoma de Planta , Malus/genética , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN , ADN de Plantas/química , Frutas/crecimiento & desarrollo , Genes de Plantas , Genotipo , Desequilibrio de Ligamiento , Malus/crecimiento & desarrollo , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Sintenía
14.
BMC Genomics ; 18(1): 404, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28583082

RESUMEN

BACKGROUND: Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. RESULTS: Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. CONCLUSIONS: The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality.


Asunto(s)
Cruzamiento , Prunus persica/genética , Sitios de Carácter Cuantitativo/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genotipo , Polimorfismo de Nucleótido Simple , Probabilidad , Prunus persica/crecimiento & desarrollo , Solubilidad
15.
Hortic Res ; 3: 16057, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917289

RESUMEN

Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.

16.
BMC Plant Biol ; 16(1): 130, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277533

RESUMEN

BACKGROUND: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. RESULTS: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. CONCLUSIONS: The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.


Asunto(s)
Flujo Génico , Variación Genética , Malus/genética , Europa (Continente) , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Malus/clasificación , Malus/embriología , Malus/metabolismo , Repeticiones de Microsatélite , Filogenia
17.
J Exp Bot ; 67(9): 2875-88, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27034326

RESUMEN

In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase.


Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas/genética , Malus/genética , Flores/genética , Genes de Plantas/fisiología , Haplotipos/genética , Malus/crecimiento & desarrollo , Malus/fisiología , Linaje , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo
18.
Plant J ; 86(1): 62-74, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26919684

RESUMEN

Cultivated apple (Malus × domestica Borkh.) is one of the most important fruit crops in temperate regions, and has great economic and cultural value. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid linkage disequilibrium decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. The SNPs were chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359 994 or 74%) fell in the stringent class of poly high resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple.


Asunto(s)
Genoma de Planta/genética , Técnicas de Genotipaje/métodos , Malus/genética , Polimorfismo de Nucleótido Simple/genética , Mapeo Cromosómico , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos
19.
PLoS One ; 10(9): e0136803, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26352671

RESUMEN

Peach was domesticated in China more than four millennia ago and from there it spread world-wide. Since the middle of the last century, peach breeding programs have been very dynamic generating hundreds of new commercial varieties, however, in most cases such varieties derive from a limited collection of parental lines (founders). This is one reason for the observed low levels of variability of the commercial gene pool, implying that knowledge of the extent and distribution of genetic variability in peach is critical to allow the choice of adequate parents to confer enhanced productivity, adaptation and quality to improved varieties. With this aim we genotyped 1,580 peach accessions (including a few closely related Prunus species) maintained and phenotyped in five germplasm collections (four European and one Chinese) with the International Peach SNP Consortium 9K SNP peach array. The study of population structure revealed the subdivision of the panel in three main populations, one mainly made up of Occidental varieties from breeding programs (POP1OCB), one of Occidental landraces (POP2OCT) and the third of Oriental accessions (POP3OR). Analysis of linkage disequilibrium (LD) identified differential patterns of genome-wide LD blocks in each of the populations. Phenotypic data for seven monogenic traits were integrated in a genome-wide association study (GWAS). The significantly associated SNPs were always in the regions predicted by linkage analysis, forming haplotypes of markers. These diagnostic haplotypes could be used for marker-assisted selection (MAS) in modern breeding programs.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Genotipo , Polimorfismo de Nucleótido Simple , Prunus persica/genética , Mapeo Cromosómico , Variación Genética , Estudio de Asociación del Genoma Completo , Haplotipos , Fenotipo , Filogenia
20.
Food Chem ; 182: 111-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25842316

RESUMEN

Fruit texture changes impair the quality of apples submitted to long term storage, especially under cold. The changes are due to cell wall modifications during ripening and senescence and are associated to ethylene. We have investigated the activity of α-l-arabinofuranosidase, a glycosyl hydrolase acting on the side chains of pectin in the cell wall and middle lamella. The transcription of arabinofuranosidase coding sequences 1 and 3 was investigated in plant organs and in response to ethylene, employing hormone application and 1-methylcyclopropene. The transcription of arabinofuranosidase genes is not restricted to fruits, although upregulated by ripening and ethylene. Transcripts of the genes were detected under cold storage up to 180 days. Similarly, arabinofuranosidase activity increased with rising levels of ethylene and under cold storage. Levels of arabinofuranosidase3 transcripts were higher than those of arabinofuranosidase1, suggesting that the first is an important contributor to enzyme activity and texture changes during cold storage.


Asunto(s)
Frutas/química , Glicósido Hidrolasas/química , Malus/química , Pared Celular , Almacenamiento de Alimentos , Frutas/genética , Expresión Génica , Glicósido Hidrolasas/genética , Malus/genética , Pectinas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...