Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Nat Commun ; 15(1): 2021, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448421

RESUMEN

In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Humanos , Masculino , Adolescente , Parasitemia/genética , Perfilación de la Expresión Génica , Malaria Falciparum/genética , Movimiento Celular
2.
J Infect Dis ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38330357

RESUMEN

INTRODUCTION: Malaria is preventable yet causes >600,000 deaths annually. RTS, S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation Phase 1 study of a recombinant, full-length circumsporozoite protein vaccine (rCSP) administered with adjuvant GLA-LSQ on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naïve adults. Primary endpoints were safety and reactogenicity. Secondary endpoints were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection (CHMI). RESULTS: Participants were enrolled into four groups receiving rCSP/GLA-LSQ: 10 µg x 3 (n = 20), 30 µg x 3 (n = 10), 60 µg x 3 (n = 10) or 60 µg x 2 (n = 9); ten participants received 30 µg rCSP alone x 3; and six infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent CHMI 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher IgG titers, but did not achieve previously established RTS, S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess if adjuvant or schedule adjustments improve efficacy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03589794.

3.
Trials ; 25(1): 87, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279124

RESUMEN

BACKGROUND: Despite treatment with highly effective antimalarial drugs, malaria annually claims the lives of over half a million children under 5-years of age in sub-Saharan Africa. Cerebral malaria (CM), defined as Plasmodium falciparum infection with coma, is the severe malaria syndrome with the highest mortality. Studies in the CM mouse model suggest that a T cell-mediated response underlies CM pathology, opening a new target for therapy in humans. This trial aims to establish the preliminary safety of one such novel therapy, the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON). METHODS: In this phase I/IIa dose-escalation clinical trial, a single dose of intravenous (IV) DON is administered to three participants groups-healthy adults and adults with uncomplicated malaria, then pediatric participants with CM-to primarily assess safety. The secondary objective of this trial is to assess pharmacokinetics of DON over a range of doses. The open-label adult portion of the trial enrolls 40 healthy adults concurrently with 40 adults with uncomplicated malaria. Cohorts of 10 participants receive a single IV dose of DON with doses escalating between cohorts from 0.1 mg/kg, 1.0 mg/kg, 5.0 mg/kg, to 10 mg/kg. Following subsequent safety review, a randomized, double-blind, and placebo-controlled pediatric study enrolls 72 participants aged 6 months to 14 years with CM. The pediatric portion of the study minimally spans three malaria seasons including a planned interim analysis after 50% of pediatric enrollments. The first half of pediatric participants receive DON 0.1 mg/kg, 1.0 mg/kg, or placebo. Dosing for the second half of pediatric participants is informed by the safety and preliminary efficacy results of those previously enrolled. The pediatric portion of the study has an exploratory outcome evaluating the preliminary efficacy of DON. Efficacy is assessed by diagnostics predictive of CM outcome: electroencephalography (EEG), magnetic resonance imaging (MRI), and transcranial doppler (TCD), measured before and after DON administration. All participants with malaria receive standard of care antimalarials in accordance with local guidelines, regardless of study drug dose group. DISCUSSION: This preliminary safety and efficacy study evaluates DON, a candidate adjunctive therapy for pediatric CM. If results support DON preliminary safety and efficacy, follow-up phase II and III clinical trials will be indicated. TRIAL REGISTRATION: This trial was registered on ClinicalTrials.gov on 28 July 2022 (NCT05478720).


Asunto(s)
Antimaláricos , Malaria Cerebral , Malaria Falciparum , Adulto , Animales , Ratones , Humanos , Niño , Preescolar , Malaria Cerebral/diagnóstico , Malaria Cerebral/tratamiento farmacológico , Plasmodium falciparum , Malaria Falciparum/diagnóstico , Malaria Falciparum/tratamiento farmacológico , África del Sur del Sahara , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Lancet ; 403(10425): 459-468, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38281499

RESUMEN

BACKGROUND: Randomised controlled trials of typhoid conjugate vaccines among children in Africa and Asia have shown high short-term efficacy. Data on the durability of protection beyond 2 years are sparse. We present the final analysis of a randomised controlled trial in Malawi, encompassing more than 4 years of follow-up, with the aim of investigating vaccine efficacy over time and by age group. METHODS: In this phase 3, double-blind, randomised controlled efficacy trial in Blantyre, Malawi, healthy children aged 9 months to 12 years were randomly assigned (1:1) by an unmasked statistician to receive a single dose of Vi polysaccharide conjugated to tetanus toxoid vaccine (Vi-TT) or meningococcal capsular group A conjugate (MenA) vaccine. Children had to have no previous history of typhoid vaccination and reside in the study areas for inclusion and were recruited from government schools and health centres. Participants, their parents or guardians, and the study team were masked to vaccine allocation. Nurses administering vaccines were unmasked. We did surveillance for febrile illness from vaccination until follow-up completion. The primary outcome was first occurrence of blood culture-confirmed typhoid fever. Eligible children who were randomly assigned and vaccinated were included in the intention-to-treat analyses. This trial is registered at ClinicalTrials.gov, NCT03299426. FINDINGS: Between Feb 21, 2018, and Sept 27, 2018, 28 130 children were vaccinated; 14 069 were assigned to receive Vi-TT and 14 061 to receive MenA. After a median follow-up of 4·3 years (IQR 4·2-4·5), 24 (39·7 cases per 100 000 person-years) children in the Vi-TT group and 110 (182·7 cases per 100 000 person-years) children in the MenA group were diagnosed with a first episode of blood culture-confirmed typhoid fever. In the intention-to-treat population, efficacy of Vi-TT was 78·3% (95% CI 66·3-86·1), and 163 (129-222) children needed to be vaccinated to prevent one case. Efficacies by age group were 70·6% (6·4-93·0) for children aged 9 months to 2 years; 79·6% (45·8-93·9) for children aged 2-4 years; and 79·3% (63·5-89·0) for children aged 5-12 years. INTERPRETATION: A single dose of Vi-TT is durably efficacious for at least 4 years among children aged 9 months to 12 years and shows efficacy in all age groups, including children younger than 2 years. These results support current WHO recommendations in typhoid-endemic areas for mass campaigns among children aged 9 months to 15 years, followed by routine introduction in the first 2 years of life. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Niño , Humanos , Lactante , Fiebre Tifoidea/epidemiología , Fiebre Tifoidea/prevención & control , Salmonella typhi , Vacunas Conjugadas , Malaui/epidemiología , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Malar J ; 22(1): 383, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115002

RESUMEN

BACKGROUND: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR = 1-hazard ratio or VERR = 1-risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. METHODS: Power of VEmolFOI and VEC was compared to that of VEHR and VERR by simulations and analytic derivations, and the four VE methods were applied to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. RESULTS: In the trial of RTS,S vaccine, a significantly reduced number of clones at first infection was observed, but this was not the case in trials of PfSPZ Vaccine or primaquine, although the PfSPZ trial lacked power to show a reduction. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like those from RTS,S, but VEC is less powerful than VEHR for trials in which the number of clones at first infection is not reduced. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. CONCLUSIONS: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, these estimators are not recommended as primary endpoints for small trials unless supported by targeted data analysis. TRIAL REGISTRATIONS: NCT00866619, NCT02663700, NCT02143934.


Asunto(s)
Antimaláricos , Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Niño , Humanos , Lactante , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Genotipo , Malaria/tratamiento farmacológico , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/epidemiología , Primaquina/uso terapéutico , Ensayos Clínicos como Asunto
6.
Res Sq ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961587

RESUMEN

In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.

7.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961701

RESUMEN

In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.

8.
Res Sq ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790581

RESUMEN

Background: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR=1 - hazard ratio or VERR=1 - risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. Methods: We used simulations and analytic derivations to compare power of these methods to VEHR and VERR and applied them to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. Results: The RTS,S vaccine significantly reduced the number of clones at first infection, but PfSPZ vaccine and primaquine did not. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like RTS,S, but VEC is less powerful than VEHR for vaccines which do not reduce the number of clones at first infection. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. Conclusions: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, we recommend against these estimators as primary endpoints for small trials unless supported by targeted data analysis. Trial registrations: NCT00866619, NCT02663700, NCT02143934.

9.
mSphere ; 8(5): e0045123, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791774

RESUMEN

Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Niño , Humanos , Preescolar , Receptor de Proteína C Endotelial/metabolismo , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Epítopos , Péptidos
10.
EBioMedicine ; 96: 104799, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738833

RESUMEN

BACKGROUND: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. METHODS: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7-15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. FINDINGS: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05-0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01-0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. INTERPRETATION: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. FUNDING: National Institutes of Health.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2 , Estados Unidos , Vacunación
11.
J Pediatric Infect Dis Soc ; 12(9): 513-518, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37589596

RESUMEN

We assessed anti-Vi IgG/IgA responses to typhoid conjugate vaccine (TCV) in children enrolled in a double-blind randomized controlled, phase 2 trial in Burkina Faso. Anti-Vi IgG seroconversion and anti-Vi IgA titers were higher in TCV than control recipients at 30-35 months post-vaccination. TCV induces durable immunity in Burkinabe children vaccinated at 15 months.


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Humanos , Niño , Lactante , Fiebre Tifoidea/prevención & control , Vacunas Conjugadas , Burkina Faso , Formación de Anticuerpos , Inmunoglobulina A , Inmunoglobulina G , Anticuerpos Antibacterianos
12.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37571809

RESUMEN

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Embarazo , Niño , Animales , Humanos , Femenino , Esporozoítos , Ciencia Traslacional Biomédica , Vacunas Atenuadas , Malaria/prevención & control , Malaria Falciparum/prevención & control , Plasmodium falciparum , Inmunización
13.
Front Immunol ; 14: 1179314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465667

RESUMEN

Introduction: Host gene and protein expression impact susceptibility to clinical malaria, but the balance of immune cell populations, cytokines and genes that contributes to protection, remains incompletely understood. Little is known about the determinants of host susceptibility to clinical malaria at a time when acquired immunity is developing. Methods: We analyzed peripheral blood mononuclear cells (PBMCs) collected from children who differed in susceptibility to clinical malaria, all from a small town in Mali. PBMCs were collected from children aged 4-6 years at the start, peak and end of the malaria season. We characterized the immune cell composition and cytokine secretion for a subset of 20 children per timepoint (10 children with no symptomatic malaria age-matched to 10 children with >2 symptomatic malarial illnesses), and gene expression patterns for six children (three per cohort) per timepoint. Results: We observed differences between the two groups of children in the expression of genes related to cell death and inflammation; in particular, inflammatory genes such as CXCL10 and STAT1 and apoptotic genes such as XAF1 were upregulated in susceptible children before the transmission season began. We also noted higher frequency of HLA-DR+ CD4 T cells in protected children during the peak of the malaria season and comparable levels cytokine secretion after stimulation with malaria schizonts across all three time points. Conclusion: This study highlights the importance of baseline immune signatures in determining disease outcome. Our data suggests that differences in apoptotic and inflammatory gene expression patterns can serve as predictive markers of susceptibility to clinical malaria.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Humanos , Leucocitos Mononucleares , Malaria/genética , Citocinas , Inmunidad Adaptativa
14.
Malar J ; 22(1): 32, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707795

RESUMEN

BACKGROUND: When people with human immunodeficiency virus (HIV) infection (PWH) develop malaria, they are at risk of poor anti-malarial treatment efficacy resulting from impairment in the immune response and/or drug-drug interactions that alter anti-malarial metabolism. The therapeutic efficacy of artemether-lumefantrine was evaluated in a cohort of PWH on antiretroviral therapy (ART) and included measurement of day 7 lumefantrine levels in a subset to evaluate for associations between lumefantrine exposure and treatment response. METHODS: Adults living with HIV (≥ 18 years), on ART for ≥ 6 months with undetectable HIV RNA viral load and CD4 count ≥ 250/mm3 were randomized to daily trimethoprim-sulfamethoxazole (TS), weekly chloroquine (CQ) or no prophylaxis. After diagnosis of uncomplicated Plasmodium falciparum malaria, a therapeutic efficacy monitoring was conducted with PCR-correction according to WHO guidelines. The plasma lumefantrine levels on day 7 in 100 episodes of uncomplicated malaria was measured. A frailty proportional hazards model with random effects models to account for clustering examined the relationship between participant characteristics and malaria treatment failure within 28 days. Pearson's Chi-squared test was used to compare lumefantrine concentrations among patients with treatment failure and adequate clinical and parasitological response (ACPR). RESULTS: 411 malaria episodes were observed among 186 participants over 5 years. The unadjusted ACPR rate was 81% (95% CI 77-86). However, after PCR correction to exclude new infections, ACPR rate was 94% (95% CI 92-97). Increasing age and living in Ndirande were associated with decreased hazard of treatment failure. In this population of adults with HIV on ART, 54% (51/94) had levels below a previously defined optimal day 7 lumefantrine level of 200 ng/ml. This occurred more commonly among participants who were receiving an efavirenz-based ART compared to other ART regimens (OR 5.09 [95% CI 1.52-7.9]). Participants who experienced treatment failure had lower day 7 median lumefantrine levels (91 ng/ml [95% CI 48-231]) than participants who experienced ACPR (190 ng/ml [95% CI 101-378], p-value < 0.008). CONCLUSION: Recurrent malaria infections are frequent in this population of PWH on ART. The PCR-adjusted efficacy of AL meets the WHO criteria for acceptable treatment efficacy. Nevertheless, lumefantrine levels tend to be low in this population, particularly in those on efavirenz-based regimens, with lower concentrations associated with more frequent malaria infections following treatment. These results highlight the importance of understanding drug-drug interactions when diseases commonly co-occur.


Asunto(s)
Antimaláricos , Artemisininas , Infecciones por VIH , Malaria Falciparum , Malaria , Humanos , Adulto , Antimaláricos/uso terapéutico , Malaui , Artemisininas/uso terapéutico , Arteméter/uso terapéutico , Combinación de Medicamentos , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Lumefantrina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Resultado del Tratamiento , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico
15.
PLoS Negl Trop Dis ; 17(1): e0010802, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696438

RESUMEN

Plasmodium parasites caused 241 million cases of malaria and over 600,000 deaths in 2020. Both P. falciparum and P. ovale are endemic to Mali and cause clinical malaria, with P. falciparum infections typically being more severe. Here, we sequenced RNA from nine pediatric blood samples collected during infections with either P. falciparum or P. ovale, and characterized the host and parasite gene expression profiles. We found that human gene expression varies more between individuals than according to the parasite species causing the infection, while parasite gene expression profiles cluster by species. Additionally, we characterized DNA polymorphisms of the parasites directly from the RNA-seq reads and found comparable levels of genetic diversity in both species, despite dramatic differences in prevalence. Our results provide unique insights into host-pathogen interactions during malaria infections and their variations according to the infecting Plasmodium species, which will be critical to develop better elimination strategies against all human Plasmodium parasites.


Asunto(s)
Malaria Falciparum , Malaria , Transcriptoma , Niño , Humanos , Malaria/epidemiología , Malaria/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Plasmodium falciparum , Plasmodium ovale
16.
Lancet Glob Health ; 11(1): e136-e144, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442498

RESUMEN

BACKGROUND: Typhoid conjugate vaccines are being introduced in low-income and middle-income countries to prevent typhoid illness in children. Vaccine effectiveness studies assess vaccine performance after introduction. The test-negative design is a commonly used method to estimate vaccine effectiveness that has not been applied to typhoid vaccines because of concerns over blood culture insensitivity. The overall aim of the study was to evaluate the appropriateness of using a test-negative design to assess typhoid Vi polysaccharide-tetanus toxoid conjugate vaccine (Vi-TT) effectiveness using a gold standard randomised controlled trial database. METHODS: Using blood culture data from a randomised controlled trial of Vi-TT in Malawi, we simulated a test-negative design to derive vaccine effectiveness estimates using three different approaches and compared these to randomised trial efficacy results. In the randomised trial, 27 882 children aged 9 months to 12 years were randomly assigned (1:1) to receive a single dose of Vi-TT or meningococcal capsular group A conjugate vaccine between Feb 21 and Sept 27, 2018, and were followed up for blood culture-confirmed typhoid fever until Sept 30, 2021. FINDINGS: For all three test-negative design approaches, vaccine effectiveness estimates (test-negative design A, 80·3% [95% CI 66·2 to 88·5] vs test-negative design B, 80·5% [66·5 to 88·6] vs test-negative design C, 80·4% [66·9 to 88·4]) were almost identical to the randomised trial results (80·4% [95% CI 66·4 to 88·5]). Receipt of Vi-TT did not affect the risk of non-typhoid fever (vaccine efficacy against non-typhoid fever -0·4% [95% CI -4·9 to 3·9] vs -1% [-5·6 to 3·3] vs -2·5% [-6·4 to 1·3] for test-negative design A, test-negative design B, and test-negative design C, respectively). INTERPRETATION: This study validates the test-negative design core assumption for typhoid vaccine effectiveness estimation and shows the accuracy and precision of the estimates compared with the randomised controlled trial. These results show that the test-negative design is suitable for assessing typhoid conjugate vaccine effectiveness in post-introduction studies using blood culture surveillance. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Niño , Humanos , Vacunas Conjugadas , Eficacia de las Vacunas , Malaui , Salmonella typhi , Fiebre Tifoidea/prevención & control , Fiebre Tifoidea/epidemiología
17.
Sci Transl Med ; 14(674): eabj3776, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36475905

RESUMEN

A highly effective malaria vaccine remains elusive despite decades of research. Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), a metabolically active, nonreplicating, whole parasite vaccine demonstrated safety and vaccine efficacy (VE) against endemic P. falciparum for 6 months in Malian adults receiving a five-dose regimen. Safety, immunogenicity, and VE of a three-dose regimen were assessed in adults in Balonghin, Burkina Faso in a two-component study: an open-label dose escalation trial with 32 participants followed by a double-blind, randomized, placebo-controlled trial (RCT) with 80 participants randomized to receive three doses of 2.7 × 106 PfSPZ (N = 39) or normal saline (N = 41) just before malaria season. To clear parasitemia, artesunate monotherapy was administered before first and last vaccinations. Thick blood smear microscopy was performed on samples collected during illness and every 4 weeks for 72 weeks after last vaccinations, including two 6-month malaria transmission seasons. Safety outcomes were assessed in all 80 participants who received at least one dose and VE for 79 participants who received three vaccinations. Myalgia was the only symptom that differed between groups. VE (1 - risk ratio; primary VE endpoint) was 38% at 6 months (P = 0.017) and 15% at 18 months (0.078). VE (1 - hazard ratio) was 48% and 46% at 6 and 18 months (P = 0.061 and 0.018). Two weeks after the last dose, antibodies to P. falciparum circumsporozoite protein and PfSPZ were higher in protected versus unprotected vaccinees. A three-dose regimen of PfSPZ Vaccine demonstrated safety and efficacy against malaria infection in malaria-experienced adults.


Asunto(s)
Esporozoítos , Vacunas , Humanos , Animales
18.
EBioMedicine ; 86: 104375, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36436281

RESUMEN

BACKGROUND: Immunity to mosquito salivary proteins could provide protection against multiple mosquito-borne diseases and significantly impact public health. We evaluated the safety and immunogenicity of AGS-v PLUS, a mosquito salivary peptide vaccine, in healthy adults 18-50 years old. METHODS: We conducted a randomized, double-blind, placebo-controlled Phase 1 study of AGS-v PLUS administered subcutaneously on Days 1 and 22 at the Center for Vaccine Development and Global Health, Baltimore, MD, USA. Participants were block randomized 1:1:1:1:1 to two doses saline placebo, two doses AGS-v PLUS, AGS-v PLUS/ISA-51 and saline placebo, two doses AGS-v PLUS/ISA-51, or two doses AGS-v PLUS/Alhydrogel. Primary endpoints were safety (all participants receiving ≥1 injection) and antibody and cytokine responses (all participants with day 43 samples), analysed by intention to treat. FINDINGS: Between 26 August 2019 and 25 February 2020, 51 participants were enrolled and randomized, 11 into the single dose AGS-v PLUS/ISA-51 group and ten in other groups. Due to COVID-19, 15 participants did not return for day 43 samplings. Participants experienced no treatment-emergent or serious adverse events. All solicited symptoms in 2/10 placebo recipients and 22/41 AGS-v PLUS recipients after dose one and 1/10 placebo recipients and 22/41 AGS-v PLUS recipients after dose two were mild/moderate except for one severe fever the day after vaccination (placebo group). Only injection site pain was more common in vaccine groups (15/51 after dose 1 and 11/51 after dose 2) versus placebo. Compared to placebo, all vaccine groups had significantly greater fold change in anti-AGS-v PLUS IgG and IFN-É£ from baseline. INTERPRETATION: AGS-v PLUS had favourable safety profile and induced robust immune responses. Next steps will determine if findings translate into clinical efficacy against mosquito-borne diseases. FUNDING: UK Department of Health and Social Care.


Asunto(s)
Infecciones por Arbovirus , Culicidae , Proteínas y Péptidos Salivales , Vacunas de Subunidad , Adolescente , Adulto , Animales , Humanos , Persona de Mediana Edad , Adulto Joven , Culicidae/inmunología , Culicidae/virología , Método Doble Ciego , Vacunación , Vacunas de Subunidad/inmunología , Infecciones por Arbovirus/prevención & control , Proteínas y Péptidos Salivales/inmunología
19.
Front Immunol ; 13: 1006716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389797

RESUMEN

Background: While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods: Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results: Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion: Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Niño , Lactante , Animales , Femenino , Humanos , Masculino , Malaria Falciparum/prevención & control , Plasmodium falciparum , Esporozoítos , Malaria/tratamiento farmacológico
20.
Medicine (Baltimore) ; 101(39): e30591, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36181120

RESUMEN

Adverse events may be a cause of observed poor completion of isoniazid preventive therapy (IPT) among people living with HIV in high tuberculosis burden areas. Data on IPT-related adverse events (AE) from sub-Saharan Africa are scarce. We report IPT-related AEs, associated clinical characteristics, and IPT discontinuations in adults who were stable on antiretroviral therapy (ART) when they initiated IPT. Cohort study nested within a randomized, controlled, clinical trial of cotrimoxazole and chloroquine prophylaxis in Malawians aged ≥ 18 years and virologically suppressed on ART. Eight hundred sixty-nine patients were followed for a median of 6 months after IPT initiation. IPT relatedness of AEs was determined retrospectively with the World Health Organization case-causality tool. Frailty survival regression modeling identified factors associated with time to first probably IPT-related AE. The overall IPT-related AE incidence rate was 1.1/person year of observation. IPT relatedness was mostly uncertain and few AEs were severe. Most common were liver and hematological toxicities. Higher age increased risk of a probably IPT-related AE (aHR = 1.02; 95% CI 1.00-1.06; P = .06) and higher weight reduced this risk (aHR = 0.98; 95% CI 0.96-1.00; P = .03). Of 869 patients, 114 (13%) discontinued IPT and 94/114 (82%) discontinuations occurred at the time of a possibly or probably IPT-related AE. We observed a high incidence of mostly mild IPT-related AEs among individuals who were stable on ART. More than 1 in 8 persons discontinued IPT. These findings inform strategies to improve implementation of IPT in adults on ART, including close monitoring of groups at higher risk of IPT-related AEs.


Asunto(s)
Infecciones por VIH , Isoniazida , Adulto , Antituberculosos/efectos adversos , Cloroquina/uso terapéutico , Estudios de Cohortes , Infecciones por VIH/epidemiología , Humanos , Isoniazida/efectos adversos , Estudios Retrospectivos , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...