Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 188(2): 782-794, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791481

RESUMEN

The plant shoot apex houses the shoot apical meristem, a highly organized and active stem-cell tissue where molecular signaling in discrete cells determines when and where leaves are initiated. We optimized a spatial transcriptomics approach, in situ sequencing (ISS), to colocalize the transcripts of 90 genes simultaneously on the same section of tissue from the maize (Zea mays) shoot apex. The RNA ISS technology reported expression profiles that were highly comparable with those obtained by in situ hybridizations (ISHs) and allowed the discrimination between tissue domains. Furthermore, the application of spatial transcriptomics to the shoot apex, which inherently comprised phytomers that are in gradual developmental stages, provided a spatiotemporal sequence of transcriptional events. We illustrate the power of the technology through PLASTOCHRON1 (PLA1), which was specifically expressed at the boundary between indeterminate and determinate cells and partially overlapped with ROUGH SHEATH1 and OUTER CELL LAYER4 transcripts. Also, in the inflorescence, PLA1 transcripts localized in cells subtending the lateral primordia or bordering the newly established meristematic region, suggesting a more general role of PLA1 in signaling between indeterminate and determinate cells during the formation of lateral organs. Spatial transcriptomics builds on RNA ISH, which assays relatively few transcripts at a time and provides a powerful complement to single-cell transcriptomics that inherently removes cells from their native spatial context. Further improvements in resolution and sensitivity will greatly advance research in plant developmental biology.


Asunto(s)
Células Vegetales , Proteínas de Plantas/química , Análisis de Secuencia de ARN/métodos , Zea mays/química , Expresión Génica , Proteínas de Plantas/genética , Análisis de Secuencia de ARN/instrumentación , Zea mays/genética
2.
STAR Protoc ; 2(2): 100398, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33796873

RESUMEN

RNA in situ hybridization can be time-consuming and difficult to troubleshoot. Here, we provide an optimized protocol for maize leaf tissue, though it can be applied to other plant tissues such as shoot apical meristems, embryos, and floral organs. We generate three >100 bp unique antisense probes for each gene of interest and hybridize them to tissue sections. For complete details on the use and execution of this protocol, please refer to Bezrutczyk et al. (2021).


Asunto(s)
Hibridación in Situ/métodos , ARN , Zea mays/genética , Microscopía/métodos , Hojas de la Planta/química , Hojas de la Planta/genética , ARN/análisis , ARN/química , ARN/genética , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...