Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Genet ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38876772

RESUMEN

Homozygous VPS50 variants have been previously described in two unrelated patients with a neurodevelopmental disorder with microcephaly, seizures and neonatal cholestasis. VPS50 encodes a subunit that is unique to the heterotetrameric endosome-associated recycling protein (EARP) complex. The other subunits of the EARP complex, such as VPS51, VPS52 and VPS53, are also shared by the Golgi-associated retrograde protein complex. We report on an 18-month-old female patient with biallelic VPS50 variants. She carried a paternally inherited heterozygous nonsense c.13A>T; p.(Lys5*) variant. By long-read genome sequencing, we characterised a structural variant with a 4.3 Mb inversion flanked by deletions at both breakpoints on the maternal allele. The ~428 kb deletion at the telomeric inversion breakpoint encompasses the entire VPS50 gene. We demonstrated a deficiency of VPS50 in patient-derived fibroblasts, confirming the loss-of-function nature of both VPS50 variants. VPS53 and VPS52 protein levels were significantly reduced and absent, respectively, in fibroblasts of the patient. These data show that VPS50 and/or EARP deficiency and the associated functional defects underlie the phenotype in patients with VPS50 pathogenic variants. The VPS50-related core phenotype comprises severe developmental delay, postnatal microcephaly, hypoplastic corpus callosum, neonatal low gamma-glutamyl transpeptidase cholestasis and failure to thrive. The disease is potentially fatal in early childhood.

2.
Front Cell Dev Biol ; 10: 1020609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726590

RESUMEN

In 2016 and 2018, Chung, Jansen and others described a new syndrome caused by haploinsufficiency of PHIP (pleckstrin homology domain interacting protein, OMIM *612,870) and mainly characterized by developmental delay (DD), learning difficulties/intellectual disability (ID), behavioral abnormalities, facial dysmorphism and obesity (CHUJANS, OMIM #617991). So far, PHIP alterations appear to be a rare cause of DD/ID. "Omics" technologies such as exome sequencing or array analyses have led to the identification of distinct types of alterations of PHIP, including, truncating variants, missense substitutions, splice variants and large deletions encompassing portions of the gene or the entire gene as well as adjacent genomic regions. We collected clinical and genetic data of 23 individuals with PHIP-associated Chung-Jansen syndrome (CHUJANS) from all over Europe. Follow-up investigations (e.g. Sanger sequencing, qPCR or Fluorescence-in-situ-Hybridization) and segregation analysis showed either de novo occurrence or inheritance from an also (mildly) affected parent. In accordance with previously described patients, almost all individuals reported here show developmental delay (22/23), learning disability or ID (22/23), behavioral abnormalities (20/23), weight problems (13/23) and characteristic craniofacial features (i.e. large ears/earlobes, prominent eyebrows, anteverted nares and long philtrum (23/23)). To further investigate the facial gestalt of individuals with CHUJANS, we performed facial analysis using the GestaltMatcher approach. By this, we could establish that PHIP patients are indistinguishable based on the type of PHIP alteration (e.g. missense, loss-of-function, splice site) but show a significant difference to the average face of healthy individuals as well as to individuals with Prader-Willi syndrome (PWS, OMIM #176270) or with a CUL4B-alteration (Intellectual developmental disorder, X-linked, syndromic, Cabezas type, OMIM #300354). Our findings expand the mutational and clinical spectrum of CHUJANS. We discuss the molecular and clinical features in comparison to the published individuals. The fact that some variants were inherited from a mildly affected parent further illustrates the variability of the associated phenotype and outlines the importance of a thorough clinical evaluation combined with genetic analyses for accurate diagnosis and counselling.

4.
Cell Physiol Biochem ; 55(S4): 96-112, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34936286

RESUMEN

BACKGROUND/AIMS: The number of patients of older age with metabolic syndrome, obesity, and associated kidney disease, which is characterized by podocyte damage, glomerular hypertrophy, and focal segmental glomerulosclerosis (FSGS), is increasing worldwide. Animal models that would reflect the development of such kidney diseases could facilitate the testing of drugs. We investigated the renal effects of a long-term high caloric diet in aged rats and the potential effects of drugs used to treat metabolic syndrome. METHODS: We analyzed nine-month-old male and female Sprague Dawley rats fed five months with a normal diet (control group) or high-fat-high-carbohydrate diet (HFHCD group). Two additional groups were fed with HFHCD and treated with drugs used in patients with metabolic syndrome, i.e., the glucagon-like peptide receptor 1 agonist liraglutide (HFHCD+liraglutide group) or metformin (HFHCD+metformin group). RESULTS: Except an increase of waist circumference as a sign of visceral obesity, the HFHCD diet did not induce metabolic syndrome or obesity. There were no significant changes in kidney function and all groups showed similar indices of glomerular injury, i.e., no differences in glomerular size or the number of glomeruli with FSGS or with FSGS-precursor lesions quantified by CD44 expression as a marker of parietal epithelial cell (PEC) activation. Analysis of ultrastructural morphology revealed mild podocyte stress and a decrease of glomerular nestin expression in the HFHCD group, whereas podocin and desmin were not altered. HFHCD did not promote fibrogenesis, however, treatment with liraglutide led to a slightly increased tubulointerstitial damage, immune cell infiltration, and collagen IV expression compared to the control and HFHCD groups. CONCLUSION: A five-month feeding with HFHCD in aged rats induced mild podocyte injury and microinflammation, which was not alleviated by liraglutide or metformin.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Enfermedades Renales/metabolismo , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Podocitos/metabolismo , Animales , Femenino , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Liraglutida/farmacología , Masculino , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/patología , Metformina/farmacología , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Obesidad/patología , Podocitos/patología , Ratas , Ratas Sprague-Dawley
5.
J Clin Invest ; 131(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33945503

RESUMEN

BACKGROUNDDeciphering the function of the many genes previously classified as uncharacterized open reading frame (ORF) would complete our understanding of a cell's function and its pathophysiology.METHODSWhole-exome sequencing, yeast 2-hybrid and transcriptome analyses, and molecular characterization were performed in this study to uncover the function of the C2orf69 gene.RESULTSWe identified loss-of-function mutations in the uncharacterized C2orf69 gene in 8 individuals with brain abnormalities involving hypomyelination and microcephaly, liver dysfunction, and recurrent autoinflammation. C2orf69 contains an N-terminal signal peptide that is required and sufficient for mitochondrial localization. Consistent with mitochondrial dysfunction, the patients showed signs of respiratory chain defects, and a CRISPR/Cas9-KO cell model of C2orf69 had similar respiratory chain defects. Patient-derived cells revealed alterations in immunological signaling pathways. Deposits of periodic acid-Schiff-positive (PAS-positive) material in tissues from affected individuals, together with decreased glycogen branching enzyme 1 (GBE1) activity, indicated an additional impact of C2orf69 on glycogen metabolism.CONCLUSIONSOur study identifies C2orf69 as an important regulator of human mitochondrial function and suggests that this gene has additional influence on other metabolic pathways.


Asunto(s)
Glucógeno/metabolismo , Mutación con Pérdida de Función , Microcefalia/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Sistemas de Lectura Abierta , Animales , Línea Celular , Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Humanos , Ratones , Ratones Noqueados , Microcefalia/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética
6.
J Med Genet ; 58(3): 173-176, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32447323

RESUMEN

BACKGROUND: The chromosomal region 11p15.5 harbours two imprinting centres (H19/IGF2:IG-DMR/IC1, KCNQ1OT1:TSS-DMR/IC2). Molecular alterations of the IC2 are associated with Beckwith-Wiedemann syndrome (BWS), whereas only single patients with growth retardation and Silver-Russell syndrome (SRS) features have been reported. CNVs in 11p15.5 account for less than 1% of patients with BWS and SRS, and they mainly consist of duplications of both ICs either affecting the maternal (SRS) or the paternal (BWS) allele. However, this correlation does not apply to smaller CNVs, which are associated with diverse clinical outcomes. METHODS AND RESULTS: We identified a family with a 132 bp deletion within the KCNQ1OT1 gene, associated with growth retardation in case of paternal transmission but a normal phenotype when maternally inherited. Comparison of molecular and clinical data with cases from the literature helped to delineate its functional relevance. CONCLUSION: Microdeletions within the paternal IC2 affecting the KCNQ1OT1 gene have been described in only five families, and they all include the differentially methylated region KCNQ1OT1:TSS-DMR/IC2 and parts of the KCNQ1 gene. However, these deletions have different impacts on the expression of both genes and the cell-cycle inhibitor CDKN1C. They thereby cause different phenotypes. The 132 bp deletion is the smallest deletion in the IC2 reported so far. It does not affect the IC2 methylation in general and the coding sequence of the KCNQ1 gene. Thus, the deletion is only associated with a growth retardation phenotype when paternally transmitted but not with other clinical features in case of maternal inheritance as observed for larger deletions.


Asunto(s)
Impresión Genómica/genética , Trastornos del Crecimiento/genética , Canal de Potasio KCNQ1/genética , Síndrome de Beckwith-Wiedemann/epidemiología , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Preescolar , Cromosomas Humanos Par 11/genética , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Femenino , Predisposición Genética a la Enfermedad , Alemania , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/patología , Humanos , Lactante , Factor II del Crecimiento Similar a la Insulina/genética , Linaje , Canales de Potasio con Entrada de Voltaje/genética , ARN Largo no Codificante/genética , Síndrome de Silver-Russell/epidemiología , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/patología
7.
Brain ; 143(8): 2406-2420, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32779703

RESUMEN

The muscle specific isoform of the supervillin protein (SV2), encoded by the SVIL gene, is a large sarcolemmal myosin II- and F-actin-binding protein. Supervillin (SV2) binds and co-localizes with costameric dystrophin and binds nebulin, potentially attaching the sarcolemma to myofibrillar Z-lines. Despite its important role in muscle cell physiology suggested by various in vitro studies, there are so far no reports of any human disease caused by SVIL mutations. We here report four patients from two unrelated, consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. All patients showed increased levels of serum creatine kinase but no or minor muscle weakness. Mild cardiac manifestations were observed. Muscle biopsies showed complete loss of large supervillin isoforms in muscle fibres by western blot and immunohistochemical analyses. Light and electron microscopic investigations revealed a structural myopathy with numerous lobulated muscle fibres and considerable myofibrillar alterations with a coarse and irregular intermyofibrillar network. Autophagic vacuoles, as well as frequent and extensive deposits of lipoproteins, including immature lipofuscin, were observed. Several sarcolemma-associated proteins, including dystrophin and sarcoglycans, were partially mis-localized. The results demonstrate the importance of the supervillin (SV2) protein for the structural integrity of muscle fibres in humans and show that recessive loss-of-function mutations in SVIL cause a distinctive and novel myopathy.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de Microfilamentos/genética , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Adolescente , Edad de Inicio , Autofagia , Niño , Femenino , Humanos , Mutación con Pérdida de Función , Masculino , Músculo Esquelético/patología , Linaje , Vacuolas/patología
8.
Sci Rep ; 8(1): 6748, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712969

RESUMEN

Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.


Asunto(s)
Núcleo Celular/genética , Daño del ADN/genética , Poli ADP Ribosilación/genética , Tioléster Hidrolasas/genética , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli Adenosina Difosfato Ribosa/genética , Poli(ADP-Ribosa) Polimerasas/genética , Procesamiento Proteico-Postraduccional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...