Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(43): 12160-12165, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969586

RESUMEN

We demonstrate an atom-efficient and easy to use H2-driven biocatalytic platform for the enantioselective incorporation of 2H-atoms into amino acids. By combining the biocatalytic deuteration catalyst with amino acid dehydrogenase enzymes capable of reductive amination, we synthesised a library of multiply isotopically labelled amino acids from low-cost isotopic precursors, such as 2H2O and 15NH4+. The chosen approach avoids the use of pre-labeled 2H-reducing agents, and therefore vastly simplifies product cleanup. Notably, this strategy enables 2H, 15N, and an asymmetric centre to be introduced at a molecular site in a single step, with full selectivity, under benign conditions, and with near 100% atom economy. The method facilitates the preparation of amino acid isotopologues on a half-gram scale. These amino acids have wide applicability in the analytical life sciences, and in particular for NMR spectroscopic analysis of proteins. To demonstrate the benefits of the approach for enabling the workflow of protein NMR chemists, we prepared l-[α-2H,15N, ß-13C]-alanine and integrated it into a large (>400 kDa) heat-shock protein oligomer, which was subsequently analysable by methyl-TROSY techniques, revealing new structural information.

2.
Nat Commun ; 14(1): 2693, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258512

RESUMEN

Biocatalysis-based synthesis can provide a sustainable and clean platform for producing chemicals. Many oxidative biocatalytic routes require the cofactor NAD+ as an electron acceptor. To date, NADH oxidase (NOX) remains the most widely applied system for NAD+ regeneration. However, its dependence on O2 implies various technical challenges in terms of O2 supply, solubility, and mass transfer. Here, we present the suitability of a NAD+ regeneration system in vitro based on H2 evolution. The efficiency of the hydrogenase-based system is demonstrated by integrating it into a multi-enzymatic cascade to produce ketoacids from sugars. The total NAD+ recycled using the hydrogenase system outperforms NOX in all different setups reaching up to 44,000 mol per mol enzyme. This system proves to be scalable and superior to NOX in terms of technical simplicity, flexibility, and total output. Furthermore, the system produces only green H2 as a by-product even in the presence of O2.


Asunto(s)
Hidrogenasas , Hidrogenasas/metabolismo , Oxígeno , Biocatálisis , NAD/metabolismo , Oxidación-Reducción , Estrés Oxidativo
3.
Front Microbiol ; 14: 1122078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032909

RESUMEN

Cyanobacteria have raised great interest in biotechnology, e.g., for the sustainable production of molecular hydrogen (H2) using electrons from water oxidation. However, this is hampered by various constraints. For example, H2-producing enzymes compete with primary metabolism for electrons and are usually inhibited by molecular oxygen (O2). In addition, there are a number of other constraints, some of which are unknown, requiring unbiased screening and systematic engineering approaches to improve the H2 yield. Here, we introduced the regulatory [NiFe]-hydrogenase (RH) of Cupriavidus necator (formerly Ralstonia eutropha) H16 into the cyanobacterial model strain Synechocystis sp. PCC 6803. In its natural host, the RH serves as a molecular H2 sensor initiating a signal cascade to express hydrogenase-related genes when no additional energy source other than H2 is available. Unlike most hydrogenases, the C. necator enzymes are O2-tolerant, allowing their efficient utilization in an oxygenic phototroph. Similar to C. necator, the RH produced in Synechocystis showed distinct H2 oxidation activity, confirming that it can be properly matured and assembled under photoautotrophic, i.e., oxygen-evolving conditions. Although the functional H2-sensing cascade has not yet been established in Synechocystis yet, we utilized the associated two-component system consisting of a histidine kinase and a response regulator to drive and modulate the expression of a superfolder gfp gene in Escherichia coli. This demonstrates that all components of the H2-dependent signal cascade can be functionally implemented in heterologous hosts. Thus, this work provides the basis for the development of an intrinsic H2 biosensor within a cyanobacterial cell that could be used to probe the effects of random mutagenesis and systematically identify promising genetic configurations to enable continuous and high-yield production of H2 via oxygenic photosynthesis.

4.
Inorg Chem ; 62(2): 769-781, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36580657

RESUMEN

Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(µ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).

5.
J Am Chem Soc ; 144(37): 17022-17032, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36084022

RESUMEN

NAD+-reducing [NiFe] hydrogenases are valuable biocatalysts for H2-based energy conversion and the regeneration of nucleotide cofactors. While most hydrogenases are sensitive toward O2 and elevated temperatures, the soluble NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus (HtSH) is O2-tolerant and thermostable. Thus, it represents a promising candidate for biotechnological applications. Here, we have investigated the catalytic activity and active-site structure of native HtSH and variants in which a glutamate residue in the active-site cavity was replaced by glutamine, alanine, and aspartate. Our biochemical, spectroscopic, and theoretical studies reveal that at least two active-site states of oxidized HtSH feature an unusual architecture in which the glutamate acts as a terminal ligand of the active-site nickel. This observation demonstrates that crystallographically observed glutamate coordination represents a native feature of the enzyme. One of these states is diamagnetic and characterized by a very high stretching frequency of an iron-bound active-site CO ligand. Supported by density-functional-theory calculations, we identify this state as a high-valent species with a biologically unprecedented formal Ni(IV) ground state. Detailed insights into its structure and dynamics were obtained by ultrafast and two-dimensional infrared spectroscopy, demonstrating that it represents a conformationally strained state with unusual bond properties. Our data further show that this state is selectively and reversibly formed under oxic conditions, especially upon rapid exposure to high O2 levels. We conclude that the kinetically controlled formation of this six-coordinate high-valent state represents a specific and precisely orchestrated stereoelectronic response toward O2 that could protect the enzyme from oxidative damage.


Asunto(s)
Hidrogenasas , Alanina/metabolismo , Ácido Aspártico/metabolismo , Dominio Catalítico , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Hidrogenasas/química , Hydrogenophilaceae , Hierro/química , Ligandos , NAD/metabolismo , Níquel/química , Oxidación-Reducción , Oxígeno/química
6.
Chem Commun (Camb) ; 58(75): 10540-10543, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36047350

RESUMEN

We demonstrate a recycling system for synthetic nicotinamide cofactor analogues using a soluble hydrogenase with turnover number of >1000 for reduction of the cofactor analogues by H2. Coupling this system to an ene reductase, we show quantitative conversion of N-ethylmaleimide to N-ethylsuccinimide. The biocatalyst system retained >50% activity after 7 h.


Asunto(s)
Hidrogenasas , Etilmaleimida , Hidrógeno , Hidrogenasas/metabolismo , NAD/metabolismo , Niacinamida , Oxidación-Reducción , Oxidorreductasas/metabolismo , Succinimidas
7.
Catal Today ; 387: 186-196, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35582111

RESUMEN

The 100th anniversary of a leading nitrogen fixation technology developer like CASALE SA is a reason to reflect over the 20th century successful solution of the problem of world food supply, and to look out for solutions for sustainable developments with respect to ammonia production. We review the role of nitrogen as essential chemical constituent in photosynthesis and biology, and component of ammonia as it is used as fertilizer for primary production by photosynthesis for farming and food supply and its future role as energy carrier. While novel synthesis methods and very advanced synchrotron based x-ray analytical techniques are being developed, we feel it is important to refer to the historical and economical context of nitrogen. The breaking of the N≡N triple bond remains a fundamental chemical and energetic problem in this context. We review the electrochemical ammonia synthesis as an energetically and environmentally benign method. Two relatively novel X-ray spectroscopy methods, which are relevant for the molecular understanding of the catalysts and biocatalysts, i.e. soft X-ray absorption spectroscopy and nuclear resonant vibration spectroscopy are presented. We illustrate the perceived reality in fertilizer usage on the field, and fertilizer production in the factory complex with photos and thus provide a contrast to the academic view of the molecular process of ammonia function and production.

8.
Chembiochem ; 23(12): e202200195, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35385600

RESUMEN

Methane is a widespread energy source and can serve as an attractive C1 building block for a future bioeconomy. The soluble methane monooxygenase (sMMO) is able to break the strong C-H bond of methane and convert it to methanol. The high structural complexity, multiplex cofactors, and unfamiliar folding or maturation procedures of sMMO have hampered the heterologous production and thus biotechnological applications. Here, we demonstrate the heterologous production of active sMMO from the marine Methylomonas methanica MC09 in Escherichia coli by co-synthesizing the GroES/EL chaperonin. Iron determination, electron paramagnetic resonance spectroscopy, and native gel immunoblots revealed the incorporation of the non-heme diiron centre and homodimer formation of active sMMO. The production of recombinant sMMO will enable the expansion of the possibilities of detailed studies, allowing for a variety of novel biotechnological applications.


Asunto(s)
Proteínas de Escherichia coli , Methylomonas , Chaperoninas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Metano/metabolismo , Methylomonas/metabolismo , Oxigenasas/metabolismo
9.
Chembiochem ; 23(5): e202100592, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34905639

RESUMEN

The soluble methane monooxygenase receives electrons from NADH via its reductase MmoC for oxidation of methane, which is itself an attractive C1 building block for a future bioeconomy. Herein, we present biochemical and spectroscopic insights into the reductase from the marine methanotroph Methylomonas methanica MC09. The presence of a flavin adenine dinucleotide (FAD) and [2Fe2S] cluster as its prosthetic group were revealed by reconstitution experiments, iron determination and electron paramagnetic resonance spectroscopy. As a true halotolerant enzyme, MmoC still showed 50 % of its specific activity at 2 M NaCl. We show that MmoC produces only trace amounts of superoxide, but mainly hydrogen peroxide during uncoupled turnover reactions. The characterization of a highly active reductase is an important step for future biotechnological applications of a halotolerant sMMO.


Asunto(s)
Oxidorreductasas , Oxigenasas , Espectroscopía de Resonancia por Spin del Electrón , Flavina-Adenina Dinucleótido/metabolismo , Metano , Methylomonas , Oxidación-Reducción , Oxigenasas/metabolismo
10.
Metab Eng ; 68: 199-209, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34673236

RESUMEN

Molecular hydrogen (H2) is considered as an ideal energy carrier to replace fossil fuels in future. Biotechnological H2 production driven by oxygenic photosynthesis appears highly promising, as biocatalyst and H2 syntheses rely mainly on light, water, and CO2 and not on rare metals. This biological process requires coupling of the photosynthetic water oxidizing apparatus to a H2-producing hydrogenase. However, this strategy is impeded by the simultaneous release of oxygen (O2) which is a strong inhibitor of most hydrogenases. Here, we addressed this challenge, by the introduction of an O2-tolerant hydrogenase into phototrophic bacteria, namely the cyanobacterial model strain Synechocystis sp. PCC 6803. To this end, the gene cluster encoding the soluble, O2-tolerant, and NAD(H)-dependent hydrogenase from Ralstonia eutropha (ReSH) was functionally transferred to a Synechocystis strain featuring a knockout of the native O2 sensitive hydrogenase. Intriguingly, photosynthetically active cells produced the O2 tolerant ReSH, and activity was confirmed in vitro and in vivo. Further, ReSH enabled the constructed strain Syn_ReSH+ to utilize H2 as sole electron source to fix CO2. Syn_ReSH+ also was able to produce H2 under dark fermentative conditions as well as in presence of light, under conditions fostering intracellular NADH excess. These findings highlight a high level of interconnection between ReSH and cyanobacterial redox metabolism. This study lays a foundation for further engineering, e.g., of electron transfer to ReSH via NADPH or ferredoxin, to finally enable photosynthesis-driven H2 production.


Asunto(s)
Hidrogenasas , Synechocystis , Hidrógeno , Hidrogenasas/genética , Oxígeno , Fotosíntesis , Synechocystis/genética , Synechocystis/metabolismo
11.
Angew Chem Int Ed Engl ; 60(29): 15854-15862, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33783938

RESUMEN

To study metalloenzymes in detail, we developed a new experimental setup allowing the controlled preparation of catalytic intermediates for characterization by various spectroscopic techniques. The in situ monitoring of redox transitions by infrared spectroscopy in enzyme lyophilizate, crystals, and solution during gas exchange in a wide temperature range can be accomplished as well. Two O2 -tolerant [NiFe]-hydrogenases were investigated as model systems. First, we utilized our platform to prepare highly concentrated hydrogenase lyophilizate in a paramagnetic state harboring a bridging hydride. This procedure proved beneficial for 57 Fe nuclear resonance vibrational spectroscopy and revealed, in combination with density functional theory calculations, the vibrational fingerprint of this catalytic intermediate. The same in situ IR setup, combined with resonance Raman spectroscopy, provided detailed insights into the redox chemistry of enzyme crystals, underlining the general necessity to complement X-ray crystallographic data with spectroscopic analyses.


Asunto(s)
Hidrogenasas/química , Hidrogenasas/metabolismo , Solventes/química , Dominio Catalítico , Cristalografía por Rayos X , Liofilización , Modelos Moleculares , Oxidación-Reducción
12.
Chem Commun (Camb) ; 56(66): 9570, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32748929

RESUMEN

Correction for 'H2 as a fuel for flavin- and H2O2-dependent biocatalytic reactions' by Ammar Al-Shameri et al., Chem. Commun., 2020, DOI: 10.1039/d0cc03229h.

13.
Chem Commun (Camb) ; 56(67): 9667-9670, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32696786

RESUMEN

The soluble hydrogenase from Ralstonia eutropha provides an atom efficient regeneration system for reduced flavin cofactors using H2 as an electron source. We demonstrated this system for highly selective ene-reductase-catalyzed C[double bond, length as m-dash]C-double bond reductions and monooxygenase-catalyzed epoxidation. Reactions were expanded to aerobic conditions to supply H2O2 for peroxygenase-catalyzed hydroxylations.


Asunto(s)
Flavinas/química , Peróxido de Hidrógeno/química , Hidrógeno/química , Oxigenasas de Función Mixta/metabolismo , Alquenos/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Hidrogenasas/metabolismo , Hidroxilación , Cinética , Oxidación-Reducción , Ralstonia/enzimología
14.
Angew Chem Int Ed Engl ; 59(27): 10929-10933, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32202370

RESUMEN

We have developed a scalable platform that employs electrolysis for an in vitro synthetic enzymatic cascade in a continuous flow reactor. Both H2 and O2 were produced by electrolysis and transferred through a gas-permeable membrane into the flow system. The membrane enabled the separation of the electrolyte from the biocatalysts in the flow system, where H2 and O2 served as electron mediators for the biocatalysts. We demonstrate the production of methylated N-heterocycles from diamines with up to 99 % product formation as well as excellent regioselective labeling with stable isotopes. Our platform can be applied for a broad panel of oxidoreductases to exploit electrical energy for the synthesis of fine chemicals.

15.
Chem Sci ; 12(6): 2189-2197, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34163984

RESUMEN

The catalytic mechanism of [NiFe]-hydrogenases is a subject of extensive research. Apart from at least four reaction intermediates of H2/H+ cycling, there are also a number of resting states, which are formed under oxidizing conditions. Although not directly involved in the catalytic cycle, the knowledge of their molecular structures and reactivity is important, because these states usually accumulate in the course of hydrogenase purification and may also play a role in vivo during hydrogenase maturation. Here, we applied low-temperature infrared (cryo-IR) and nuclear resonance vibrational spectroscopy (NRVS) to the isolated catalytic subunit (HoxC) of the heterodimeric regulatory [NiFe]-hydrogenase (RH) from Ralstonia eutropha. Cryo-IR spectroscopy revealed that the HoxC protein can be enriched in almost pure resting redox states suitable for NRVS investigation. NRVS analysis of the hydrogenase catalytic center is usually hampered by strong spectral contributions of the FeS clusters of the small, electron-transferring subunit. Therefore, our approach to investigate the FeS cluster-free, 57Fe-labeled HoxC provided an unprecedented insight into the [NiFe] site modes, revealing their contributions in a spectral range otherwise superimposed by FeS cluster-derived bands. Rationalized by density functional theory (DFT) calculations, our data provide structural descriptions of the previously uncharacterized hydroxy- and water-containing resting states. Our work highlights the relevance of cryogenic vibrational spectroscopy and DFT to elucidate the structure of barely defined redox states of the [NiFe]-hydrogenase active site.

16.
J Am Chem Soc ; 142(3): 1457-1464, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31830412

RESUMEN

[NiFe] hydrogenases catalyze the reversible oxidation of molecular hydrogen into two protons and two electrons. A key organometallic chemistry feature of the NiFe active site is that the iron atom is co-coordinated by two cyanides (CN-) and one carbon monoxide (CO) ligand. Biosynthesis of the NiFe(CN)2(CO) cofactor requires the activity of at least six maturation proteins, designated HypA-F. An additional maturase, HypX, is required for CO ligand synthesis under aerobic conditions, and preliminary in vivo data indicated that HypX releases CO using N10-formyltetrahydrofolate (N10-formyl-THF) as the substrate. HypX has a bipartite structure composed of an N-terminal module similar to N10-formyl-THF transferases and a C-terminal module homologous to enoyl-CoA hydratases/isomerases. This composition suggested that CO production takes place in two consecutive reactions. Here, we present in vitro evidence that purified HypX first transfers the formyl group of N10-formyl-THF to produce formyl-coenzyme A (formyl-CoA) as a central reaction intermediate. In a second step, formyl-CoA is decarbonylated, resulting in free CoA and carbon monoxide. Purified HypX proved to be metal-free, which makes it a unique catalyst among the group of CO-releasing enzymes.


Asunto(s)
Monóxido de Carbono/química , Enzimas/química , Formiltetrahidrofolatos/química , Hidrogenasas/química , Oxígeno/química , Ligandos
17.
Curr Opin Chem Biol ; 49: 91-96, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30544016

RESUMEN

Solar-driven electrolysis enables sustainable production of molecular hydrogen (H2), which represents a cheap and carbon-free reductant. Knallgas bacteria like Ralstonia eutropha are able to split H2 to supply energy in form of ATP and NADH, which can be subsequently used to power reactions of interest. R. eutropha employs the Calvin-Benson-Bassham cycle for the fixation of CO2, which is considered as an abundant and non-competing raw material. In this article, we summarize state-of-the-art approaches for H2-driven biosyntheses using engineered R. eutropha. Furthermore, we describe strategies for synthetic H2-driven NADH recycling. Major challenges for technical application and future perspectives are discussed.


Asunto(s)
Biotransformación , Hidrógeno/metabolismo , Cupriavidus necator/metabolismo , Ingeniería Metabólica , NAD/metabolismo , Niacinamida/metabolismo , Oxidación-Reducción
18.
Methods Enzymol ; 613: 117-151, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30509463

RESUMEN

Dioxygen-tolerant [NiFe]-hydrogenases are defined by their ability to catalyze the reaction, H2⇌2H++2e- even in the presence of O2. Catalytic and probably also noncatalytic mechanisms protect their active sites from being inactivated by reactive oxygen species, which makes them attractive subjects of investigation from both fundamental and applied perspectives. Prominent representatives of the O2-tolerant [NiFe]-hydrogenases have been isolated from the chemolithoautotrophic model organism Ralstonia eutropha H16, which can thrive in a simple mineral medium supplemented with the gases H2, O2, and CO2. In this chapter, we describe methods for cultivation and genetic manipulation of R. eutropha, both of which are prerequisites for the reproducible manufacturing of high-quality hydrogenase preparations. The purification procedures for two different O2-tolerant [NiFe]-hydrogenases from R. eutropha are described in detail, as well as the corresponding biochemical procedures used for the determination of the catalytic properties of these sophisticated enzymes.


Asunto(s)
Cupriavidus necator/enzimología , Cupriavidus necator/metabolismo , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Catálisis , Cromatografía de Gases , Hidrógeno/metabolismo , Oxidación-Reducción , Plásmidos/genética
19.
Biochim Biophys Acta Bioenerg ; 1859(1): 8-18, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28970007

RESUMEN

Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]­hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]­hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]­hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]­hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.


Asunto(s)
Proteínas Bacterianas/química , Cupriavidus necator/enzimología , Calor , Hidrógeno/química , Hidrogenasas/química , Hydrogenophilaceae/enzimología , NAD/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cupriavidus necator/genética , Estabilidad de Enzimas , Hidrógeno/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Hydrogenophilaceae/genética , NAD/metabolismo
20.
Inorg Chem ; 55(14): 6866-72, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27387959

RESUMEN

We used a novel experimental setup to conduct the first synchrotron-based (61)Ni Mössbauer spectroscopy measurements in the energy domain on Ni coordination complexes and metalloproteins. A representative set of samples was chosen to demonstrate the potential of this approach. (61)NiCr2O4 was examined as a case with strong Zeeman splittings. Simulations of the spectra yielded an internal magnetic field of 44.6 T, consistent with previous work by the traditional (61)Ni Mössbauer approach with a radioactive source. A linear Ni amido complex, (61)Ni{N(SiMe3)Dipp}2, where Dipp = C6H3-2,6-(i)Pr2, was chosen as a sample with an "extreme" geometry and large quadrupole splitting. Finally, to demonstrate the feasibility of metalloprotein studies using synchrotron-based (61)Ni Mössbauer spectroscopy, we examined the spectra of (61)Ni-substituted rubredoxin in reduced and oxidized forms, along with [Et4N]2[(61)Ni(SPh)4] as a model compound. For each of the above samples, a reasonable spectrum could be obtained in ∼1 d. Given that there is still room for considerable improvement in experimental sensitivity, synchrotron-based (61)Ni Mössbauer spectroscopy appears to be a promising alternative to measurements with radioactive sources.


Asunto(s)
Níquel/química , Espectroscopía de Mossbauer/métodos , Sincrotrones , Magnetismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...