Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ground Water ; 58(3): 464-469, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31647117

RESUMEN

The Piper diagram has increased in popularity since its 1944 introduction and is now one of the most familiar and effective tools in the hydrogeologist's toolbox. Within the Piper diagram, three points on three related plots fully display the major ionic species of a water sample. Recently the size and availability of datasets have increased as additional field measurements and modeling results are shared more effectively in online databases. This growth presents opportunities and challenges for data analysis and conveyance-larger and longer datasets increase the potential to identify trends and patterns, but traditional Piper diagrams are quickly overwhelmed by large datasets as dense points overlap and become obscured. We present guidelines for effectively displaying large geochemical datasets on traditional Piper diagrams and new code that adds novel functionality for following these generic guidelines. This code, plotting interesting environmental data with Piper diagrams (PIED Piper), can be run within the Matlab environment or through a stand-alone graphical user interface, and is the first Matlab code to generate Piper diagrams. The illustrative examples herein demonstrate (1) how limitations in displays of large datasets may be overcome with translucent symbology, contours, and heatmaps to identify trends and patterns, (2) how clusters of similar points can be identified and differentiated with convex hulls, and (3) how temporal-and-spatial patterns may be visually diagnosed with image groups and movies. The guidelines discussed in these examples will aid PIED Piper users to achieve the two goals of effective big data visualization: analysis and communication.


Asunto(s)
Agua Subterránea , Piper , Bases de Datos Factuales
2.
Sci Total Environ ; 618: 379-387, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29132005

RESUMEN

Concern over contamination of groundwater resources in areas impacted by anthropogenic activities has led to an increasing number of baseline groundwater quality surveys intended to provide context for interpreting water quality data. Flexible screening tools that can parse through these large, regional datasets to identify spatial or temporal changes in water quality are becoming more important to groundwater scientists. One such tool, developed from previous work by the authors, makes use of linear discriminant analysis (LDA) to identify the most probable source of chloride salinity in groundwater samples based on their geochemical fingerprints. Here, we applied the model to a dataset of shallow groundwater with known sources of contamination compiled from two studies of groundwater quality in Illinois: Panno et al. (2005) and Hwang et al. (2015). By predicting the source of salinity in groundwater samples for which the sources of contamination are known, we validated model prediction-accuracy. Results show high classification accuracy for groundwater samples impacted by basin brines (e.g. deep saline groundwater) and road salt (>80%), with diminishing success for those impacted by organic sources of chloride, such as septic effluent and animal waste. Posterior probabilities, a statistic inherent to LDA, provide a proxy for prediction confidence that enables the model to be used for assessment and accountability measures, such as identifying parties responsible for contamination. LDA is complementary to fingerprinting using halogen ratios (e.g. Cl/Br) because it implicitly relies on halogen ratios for classification decisions while providing a clearer, more quantitative classification of contamination sources. Our model is ideal for regional assessment or initial screening of salinity sources in groundwater because it makes use of commonly measured solute concentrations in publicly available water quality databases.

3.
Ground Water ; 55(1): 10-26, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696430

RESUMEN

Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.


Asunto(s)
Agua Subterránea , Calor , Reproducibilidad de los Resultados , Temperatura , Agua
4.
Environ Sci Technol ; 50(10): 4979-88, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27077530

RESUMEN

Detrimental effects of road salt runoff on urban streams are compounded by its facilitated routing via storm drains, ditches, and flood channels. Elevated in-stream salinity may also result from seasonal storage and discharge of chloride in groundwater, and previous work has hypothesized that groundwater discharge to streams may have the effect of diluting stream chloride concentrations in winter and enriching them in summer. However, the hydrogeological processes controlling these patterns have not been thoroughly investigated. Our research focuses on an urban stream and floodplain system in Syracuse, NY, to understand how groundwater and surface water exchange impacts chloride storage, fate, and transport. We created a 3D groundwater flow and solute transport model of the floodplain, calibrated to the distributions of floodplain hydraulic heads and groundwater fluxes to the stream throughout the reach. We used a sensitivity analysis to calibrate and evaluate the influence of model parameters, and compared model outputs to field observations. The main source mechanism of chloride to the floodplain aquifer was high-concentration, overbank flood events in winter that directly recharged groundwater. The modeled residence time and storage capacity of the aquifer indicate that restoration projects designed to promote floodplain reconnection and the frequency of overbank flooding in winter have the potential to temporarily store chloride in groundwater, buffer surface water concentrations, and reduce stream concentrations following periods of road salting.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Inundaciones , Ríos , Cloruro de Sodio , Movimientos del Agua
5.
Ground Water ; 53(6): 859-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25408169

RESUMEN

While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce comparable hyporheic exchange to natural stream features. This study compares a stream restoration structure (cross-vane) to a natural feature (riffle) concurrently in the same stream reach using time-lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, we were able to quantify hyporheic extent and transport beneath the cross-vane structure and the riffle. We interpret from the geophysical data that the cross-vane and the natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross-vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67-h injection was detected along flowpaths for 4.6 h at the cross-vane and 4.2 h at the riffle. The spatial extent of the hyporheic zone at the cross-vane was 12% larger than that at the riffle. We compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross-vane and the riffle and differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and timescales of transport to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize these benefits.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Ríos , Movimientos del Agua , Hidrología/métodos , Temperatura
6.
Environ Sci Technol ; 48(16): 9061-9, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25062431

RESUMEN

High-volume hydraulic fracturing (HVHF) gas-drilling operations in the Marcellus Play have raised environmental concerns, including the risk of groundwater contamination. Fingerprinting water impacted by gas-drilling operations is not trivial given other potential sources of contamination. We present a multivariate statistical modeling framework for developing a quantitative, geochemical fingerprinting tool to distinguish sources of high salinity in shallow groundwater. The model was developed using new geochemical data for 204 wells in New York State (NYS), which has a HVHF moratorium and published data for additional wells in NYS and several salinity sources (Appalachian Basin brines, road salt, septic effluent, and animal waste). The model incorporates a stochastic simulation to predict the geochemistry of high salinity (>20 mg/L Cl) groundwater impacted by different salinity sources and then employs linear discriminant analysis to classify samples from different populations. Model results indicate Appalachian Basin brines are the primary source of salinity in 35% of sampled NYS groundwater wells with >20 mg/L Cl. The model provides an effective means for differentiating groundwater impacted by basin brines versus other contaminants. Using this framework, similar discriminatory tools can be derived for other regions from background water quality data.


Asunto(s)
Agua Subterránea/análisis , Modelos Teóricos , Salinidad , Análisis Discriminante , Monitoreo del Ambiente , Industria Procesadora y de Extracción , New York
7.
Ground Water ; 46(5): 671-87, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18522652

RESUMEN

Hyporheic exchange, enhanced by complex stream channel morphology, can influence biogeochemical processing in the streambed. These processes chemically alter water passing temporarily through the streambed, which eventually returns to the stream channel and can potentially affect surface water quality. To assess the degree of biogeochemical cycling induced by complex streambed morphology, we instrumented two 20-m reaches of Red Canyon Creek, Wyoming, each containing a small log dam, with in-stream minipiezometers and temperature data loggers. We simultaneously observed pore water geochemistry and streambed temperature dynamics in several bedforms located upstream or downstream of the dams. We modeled seepage flux into the streambed using heat transport modeling. Upstream of the dams, low-permeability sediments have settled out in low-velocity pools, and enhanced anaerobic biogeochemical cycling occurred in the streambed. Rapid flux into the streambed occurred in glides immediately above the dams, where streambed temperature dynamics and geochemistry were nearly identical to the stream. In riffle sequences downstream of the dams, the streambed was oxygen rich, showed evidence of nitrification, and temperature dynamics indicated high connectivity between the streambed and the stream. Further downstream, streambed pore water geochemistry indicated ground water discharge occurring at the pool-riffle transition. Assessing streambed biogeochemical cycling may be facilitated by coupling streambed temperature measurements with pore water geochemistry and can aid in understanding how hyporheic exchange contributes to overall stream biogeochemistry.


Asunto(s)
Agua Dulce/análisis , Modelos Teóricos , Temperatura , Abastecimiento de Agua/análisis , Algoritmos , Agua Dulce/química , Geografía , Nitratos/análisis , Nitritos/análisis , Fosfatos/análisis , Sulfatos/análisis , Movimientos del Agua , Wyoming
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA