Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22273257

RESUMEN

PurposeIn young adults (18 to 49 years old), investigation of the acute respiratory distress syndrome (ARDS) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been limited. We evaluated the risk factors and outcomes of ARDS following infection with SARS-CoV-2 in a young adult population. MethodsA retrospective cohort study was conducted between January 1st, 2020 and February 28th, 2021 using patient-level electronic health records (EHR), across 241 United States hospitals and 43 European hospitals participating in the Consortium for Clinical Characterization of COVID-19 by EHR (4CE). To identify the risk factors associated with ARDS, we compared young patients with and without ARDS through a federated analysis. We further compared the outcomes between young and old patients with ARDS. ResultsAmong the 75,377 hospitalized patients with positive SARS-CoV-2 PCR, 1001 young adults presented with ARDS ( 7.8% of young hospitalized adults). Their mortality rate at 90 days was 16.2% and they presented with a similar complication rate for infection than older adults with ARDS. Peptic ulcer disease, paralysis, obesity, congestive heart failure, valvular disease, diabetes, chronic pulmonary disease and liver disease were associated with a higher risk of ARDS. We described a high prevalence of obesity (53%), hypertension (38%-although not significantly associated with ARDS), and diabetes (32%). ConclusionTrough an innovative method, a large international cohort study of young adults developing ARDS after SARS-CoV-2 infection has been gather. It demonstrated the poor outcomes of this population and associated risk factor.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270410

RESUMEN

ObjectiveFor multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information. Materials and MethodsFor each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or can be a single center, corresponding to transfer learning. ResultsSimulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations. ConclusionsThe SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253596

RESUMEN

Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that that are critical to COVID-19 research. The ontology contains over 50,000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for SARS-CoV-2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of nine academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https://github.com/shyamvis/ACT-COVID-Ontology, will be useful for harmonizing EHRs for COVID-19 research beyond the ACT network.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249817

RESUMEN

OBJECTIVENeurological complications can worsen outcomes in COVID-19. We defined the prevalence of a wide range of neurological conditions among patients hospitalized with COVID-19 in geographically diverse multinational populations. METHODSUsing electronic health record (EHR) data from 348 participating hospitals across 6 countries and 3 continents between January and September 2020, we performed a cross-sectional study of hospitalized adult and pediatric patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test, both with and without severe COVID-19. We assessed the frequency of each disease category and 3-character International Classification of Disease (ICD) code of neurological diseases by countries, sites, time before and after admission for COVID-19, and COVID-19 severity. RESULTSAmong the 35,177 hospitalized patients with SARS-CoV-2 infection, there was increased prevalence of disorders of consciousness (5.8%, 95% confidence interval [CI]: 3.7%-7.8%, pFDR<.001) and unspecified disorders of the brain (8.1%, 95%CI: 5.7%-10.5%, pFDR<.001), compared to pre-admission prevalence. During hospitalization, patients who experienced severe COVID-19 status had 22% (95%CI: 19%-25%) increase in the relative risk (RR) of disorders of consciousness, 24% (95%CI: 13%-35%) increase in other cerebrovascular diseases, 34% (95%CI: 20%-50%) increase in nontraumatic intracranial hemorrhage, 37% (95%CI: 17%-60%) increase in encephalitis and/or myelitis, and 72% (95%CI: 67%-77%) increase in myopathy compared to those who never experienced severe disease. INTERPRETATIONUsing an international network and common EHR data elements, we highlight an increase in the prevalence of central and peripheral neurological phenotypes in patients hospitalized with SARS-CoV-2 infection, particularly among those with severe disease.

5.
Griffin M Weber; Chuan Hong; Nathan P Palmer; Paul Avillach; Shawn N Murphy; Alba Gutiérrez-Sacristán; Zongqi Xia; Arnaud Serret-Larmande; Antoine Neuraz; Gilbert S. Omenn; Shyam Visweswaran; Jeffrey G Klann; Andrew M South; Ne Hooi Will Loh; Mario Cannataro; Brett K Beaulieu-Jones; Riccardo Bellazzi; Giuseppe Agapito; Mario Alessiani; Bruce J Aronow; Douglas S Bell; Antonio Bellasi; Vincent Benoit; Michele Beraghi; Martin Boeker; John Booth; Silvano Bosari; Florence T Bourgeois; Nicholas W Brown; Mauro Bucalo; Luca Chiovato; Lorenzo Chiudinelli; Arianna Dagliati; Batsal Devkota; Scott L DuVall; Robert W Follett; Thomas Ganslandt; Noelia García Barrio; Tobias Gradinger; Romain Griffier; David A Hanauer; John H Holmes; Petar Horki; Kenneth M Huling; Richard W Issitt; Vianney Jouhet; Mark S Keller; Detlef Kraska; Molei Liu; Yuan Luo; Kristine E Lynch; Alberto Malovini; Kenneth D Mandl; Chengsheng Mao; Anupama Maram; Michael E Matheny; Thomas Maulhardt; Maria Mazzitelli; Marianna Milano; Jason H Moore; Jeffrey S Morris; Michele Morris; Danielle L Mowery; Thomas P Naughton; Kee Yuan Ngiam; James B Norman; Lav P Patel; Miguel Pedrera Jimenez; Rachel B Ramoni; Emily R Schriver; Luigia Scudeller; Neil J Sebire; Pablo Serrano Balazote; Anastasia Spiridou; Amelia LM Tan; Byorn W.L. Tan; Valentina Tibollo; Carlo Torti; Enrico M Trecarichi; Michele Vitacca; Alberto Zambelli; Chiara Zucco; - The Consortium for Clinical Characterization of COVID-19 by EHR (4CE); Isaac S Kohane; Tianxi Cai; Gabriel A Brat.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20247684

RESUMEN

ObjectivesTo perform an international comparison of the trajectory of laboratory values among hospitalized patients with COVID-19 who develop severe disease and identify optimal timing of laboratory value collection to predict severity across hospitals and regions. DesignRetrospective cohort study. SettingThe Consortium for Clinical Characterization of COVID-19 by EHR (4CE), an international multi-site data-sharing collaborative of 342 hospitals in the US and in Europe. ParticipantsPatients hospitalized with COVID-19, admitted before or after PCR-confirmed result for SARS-CoV-2. Primary and secondary outcome measuresPatients were categorized as "ever-severe" or "never-severe" using the validated 4CE severity criteria. Eighteen laboratory tests associated with poor COVID-19-related outcomes were evaluated for predictive accuracy by area under the curve (AUC), compared between the severity categories. Subgroup analysis was performed to validate a subset of laboratory values as predictive of severity against a published algorithm. A subset of laboratory values (CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin) was compared between North American and European sites for severity prediction. ResultsOf 36,447 patients with COVID-19, 19,953 (43.7%) were categorized as ever-severe. Most patients (78.7%) were 50 years of age or older and male (60.5%). Longitudinal trajectories of CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin showed association with disease severity. Significant differences of laboratory values at admission were found between the two groups. With the exception of D-dimer, predictive discrimination of laboratory values did not improve after admission. Sub-group analysis using age, D-dimer, CRP, and lymphocyte count as predictive of severity at admission showed similar discrimination to a published algorithm (AUC=0.88 and 0.91, respectively). Both models deteriorated in predictive accuracy as the disease progressed. On average, no difference in severity prediction was found between North American and European sites. ConclusionsLaboratory test values at admission can be used to predict severity in patients with COVID-19. Prediction models show consistency across international sites highlighting the potential generalizability of these models.

6.
Gabriel A Brat; Griffin M Weber; Nils Gehlenborg; Paul Avillach; Nathan P Palmer; Luca Chiovato; James Cimino; Lemuel R Waitman; Gilbert S Omenn; Alberto Malovini; Jason H Moore; Brett K Beaulieu-Jones; Valentina Tibollo; Shawn N Murphy; Sehi L'Yi; Mark S Keller; Riccardo Bellazzi; David A Hanauer; Arnaud Serret-Larmande; Alba Gutierrez-Sacristan; John H Holmes; Douglas S Bell; Kenneth D Mandl; Robert W Follett; Jeffrey G Klann; Douglas A Murad; Luigia Scudeller; Mauro Bucalo; Katie Kirchoff; Jean Craig; Jihad Obeid; Vianney Jouhet; Romain Griffier; Sebastien Cossin; Bertrand Moal; Lav P Patel; Antonio Bellasi; Hans U Prokosch; Detlef Kraska; Piotr Sliz; Amelia LM Tan; Kee Yuan Ngiam; Alberto Zambelli; Danielle L Mowery; Emily Schiver; Batsal Devkota; Robert L Bradford; Mohamad Daniar; - APHP/Universities/INSERM COVID-19 research collaboration; Christel Daniel; Vincent Benoit; Romain Bey; Nicolas Paris; Anne Sophie Jannot; Patricia Serre; Nina Orlova; Julien Dubiel; Martin Hilka; Anne Sophie Jannot; Stephane Breant; Judith Leblanc; Nicolas Griffon; Anita Burgun; Melodie Bernaux; Arnaud Sandrin; Elisa Salamanca; Thomas Ganslandt; Tobias Gradinger; Julien Champ; Martin Boeker; Patricia Martel; Alexandre Gramfort; Olivier Grisel; Damien Leprovost; Thomas Moreau; Gael Varoquaux; Jill-Jenn Vie; Demian Wassermann; Arthur Mensch; Charlotte Caucheteux; Christian Haverkamp; Guillaume Lemaitre; Ian D Krantz; Sylvie Cormont; Andrew South; - The Consortium for Clinical Characterization of COVID-19 by EHR (4CE); Tianxi Cai; Isaac S Kohane.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20059691

RESUMEN

We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 (COVID-19). To do this, we formed an international consortium (4CE) of 96 hospitals across 5 countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on comorbidities and temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...