Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3456-3459, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441127

RESUMEN

Skin elastic properties change during a cutaneous disorder or in the aging process. Deep knowledge of skin layers helps monitoring and diagnosing structural changes. High frequency ultrasound (HF-US) has been recently introduced to diagnose and evaluate some dermatological disorders in the clinical practice. US elastography adds elasticity information of the analyzed tissue. In particular, harmonic elastography estimates the speed of shear waves produced by external vibration sources, in order to relate the shear wave speed to the Young's modulus. In the epidermis and dermis layers, shear waves are not generated; in contrast, surface acoustic waves (SAWs) exist as they propagate in the top of the tissue. This study uses crawling wave sonoelastography for the estimation of SAWs in human thigh dermis in vivo. Experiments were performed in ten volunteers in the range of 200 - 500 Hz. As other studies suggest, SAW speed needs to be compensated to reach shear wave speed, for calculating the Young's modulus. Thus, the SAW speed estimated was corrected when it propagates in solidUS gel interface. Specifically, the elasticity modulus found was $18.35 \pm 1.04$ KPa for a vibration frequency of 200 Hz. Results suggest that the elasticity modulus can be estimated in vivo using crawling wave HF-US for skin application and shows potential for future application in skin disorders.


Asunto(s)
Módulo de Elasticidad , Dermis , Elasticidad , Diagnóstico por Imagen de Elasticidad , Humanos
2.
Artículo en Inglés | MEDLINE | ID: mdl-29856720

RESUMEN

The axial resolution of an ultrasound imaging system is inversely proportional to the bandwidth of the emitted signal. When conventional pulsing (CP) is used, the impulse response of the transducer and the excitation signal determine together the shape of the emitted pulse and its bandwidth. A way to increase the ultrasound image resolution is to increase the transducer's limited passband. The resolution enhancement compression (REC) is a coding technique that boosts the signal energy in the transition frequency bands, where the energy transduction of the ultrasound probe is less efficient. Consequently, image quality metrics including axial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) can be improved. In this paper, the objective is to combine REC with coherent plane-wave compounding (CPWC) in order to achieve better image quality at an ultrafast acquisition rate. Promising results are obtained from both wire and cyst phantoms using an excitation signal designed to provide a 54% increase in bandwidth over the one obtained with a broadband pulse excitation at -6 dB. The experimental bandwidth measured from the backscattered echoes was improved by 49% for the wire phantom, when using the CPWC-REC technique compared to CPWC-CP. Furthermore, the axial resolution as derived from the modulation transfer function of the envelope of the wire target was enhanced by 29%. The CNR and SNR were improved up to 9 and up to 4 dB, respectively, in the cyst phantom. These results reveal that CPWC-REC is able to achieve higher spatial resolution, compared to CPWC-CP, with better SNR and CNR. Moreover, experimental results show that an effective implementation on a research scanner of REC using plane-wave imaging is possible. Consistent in vivo acquisition results on rabbit are presented and discussed.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador , Animales , Vesícula Biliar/diagnóstico por imagen , Hígado/diagnóstico por imagen , Fantasmas de Imagen , Conejos , Ultrasonografía
3.
J Med Imaging (Bellingham) ; 5(1): 013505, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29430475

RESUMEN

The H-scan analysis of ultrasound images is a matched-filter approach derived from analysis of scattering from incident pulses in the form of Gaussian-weighted Hermite polynomial functions. This framework is applied in a preliminary study of thyroid lesions to examine the H-scan outputs for three categories: normal thyroid, benign lesions, and cancerous lesions within a total group size of 46 patients. In addition, phantoms comprised of spherical scatterers are analyzed to establish independent reference values for comparison. The results demonstrate a small but significant difference in some measures of the H-scan channel outputs between the different groups.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3000-3003, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29060529

RESUMEN

Skin lesions change elastic properties near the surface. In the last decades, several non-invasive elastography techniques have been developed for detecting the mechanical properties of tissue. In particular, harmonic elastography is characterized for inducing shear wave propagation by an external vibrator in order to estimate shear modulus. However, near the boundary region, propagation is governed by surface acoustic waves (SAW). This paper combines crawling waves elastography with a high-frequency ultrasound (HFUS) system for the estimation of the SAW-to-shear compensation factor when ultrasound (US) gel is used as coupling interface. Experiments explore the SAWspeed in a homogeneous phantom with a solid-water interface in order to corroborate theoretical findings. Subsequently, experiments in a solid-US gel interface are conducted in order to find the correct compensation factor. Preliminary results suggest that SAW propagation can be detected using HFUS, and shear velocity maps can be generated by applying the estimated empirical correction factor. This study will potentially avoid the underestimation of shear modulus when using SAW-based HFUS elastography which is promising for the better diagnosis of skin diseases.


Asunto(s)
Sonido , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad , Fantasmas de Imagen
5.
J Acoust Soc Am ; 140(1): 714, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27475192

RESUMEN

Sonoelastography is an ultrasonic technique that uses Kasai's autocorrelation algorithms to generate qualitative images of tissue elasticity using external mechanical vibrations. In the absence of synchronization between the mechanical vibration device and the ultrasound system, the random initial phase and finite ensemble length of the data packets result in temporal artifacts in the sonoelastography frames and, consequently, in degraded image quality. In this work, the analytic derivation of an optimal selection of acquisition parameters (i.e., pulse repetition frequency, vibration frequency, and ensemble length) is developed in order to minimize these artifacts, thereby eliminating the need for complex device synchronization. The proposed rule was verified through experiments with heterogeneous phantoms, where the use of optimally selected parameters increased the average contrast-to-noise ratio (CNR) by more than 200% and reduced the CNR standard deviation by 400% when compared to the use of arbitrarily selected imaging parameters. Therefore, the results suggest that the rule for specific selection of acquisition parameters becomes an important tool for producing high quality sonoelastography images.

6.
Artículo en Inglés | MEDLINE | ID: mdl-27295662

RESUMEN

Elastography provides tissue stiffness information that attempts to characterize the elastic properties of tissue. However, there is still limited literature comparing elastographic modalities for tissue characterization. This study focuses on two quantitative techniques using different vibration sources that have not been compared to date: crawling wave sonoelastography (CWS) and single tracking location shear wave elasticity imaging (STL-SWEI). To understand each technique's performance, shear wave speed (SWS) was measured in homogeneous phantoms and ex vivo beef liver tissue. Then, the contrast, contrast-to-noise ratio (CNR), and lateral resolution were measured in an inclusion and two-layer phantoms. The SWS values obtained with both modalities were validated with mechanical measurements (MM) which serve as ground truth. The SWS results for the three different homogeneous phantoms (10%, 13%, and 16% gelatin concentrations) and ex vivo beef liver tissue showed good agreement between CWS, STL-SWEI, and MM as a function of frequency. For all gelatin phantoms, the maximum accuracy errors were 2.52% and 2.35% using CWS and STL-SWEI, respectively. For the ex vivo beef liver, the maximum accuracy errors were 9.40% and 7.93% using CWS and STL-SWEI, respectively. For lateral resolution, contrast, and CNR, both techniques obtained comparable measurements for vibration frequencies less than 300 Hz (CWS) and distances between the push beams ( ∆x ) between 3 mm and 5.31 mm (STL-SWEI). The results obtained in this study agree over an SWS range of 1-6 m/s. They are expected to agree in perfectly linear, homogeneous, and isotropic materials, but the SWS overlap is not guaranteed in all materials because each of the three methods have unique features.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hígado/diagnóstico por imagen , Fantasmas de Imagen , Animales , Bovinos , Elasticidad , Fenómenos Electromagnéticos , Gelatina
7.
Artículo en Inglés | MEDLINE | ID: mdl-26955025

RESUMEN

Fine-needle aspiration (FNA) remains the gold standard for the diagnosis of thyroid cancer. However, currently, a large number of FNA biopsies result in negative or undetermined diagnosis, which suggests that better noninvasive tools are needed for the clinical management of thyroid cancer. Spectral-based quantitative ultrasound (QUS) characterizations may offer a better diagnostic management as previously demonstrated in mouse cancer models ex vivo. As a first step toward understanding the potential of QUS markers for thyroid disease management, this paper deals with the spectral-based QUS estimation of healthy human thyroids in vivo. Twenty volunteers were inspected by a trained radiologist using two ultrasonic imaging systems, which allowed them to acquire radio-frequency data spanning the 3-16-MHz frequency range. Estimates of attenuation coefficient slope (ACS) using the spectral logarithmic difference method had an average value of [Formula: see text]) with a standard deviation of [Formula: see text]. Estimates of backscatter coefficient (BSC) using the reference-phantom method had an average value of [Formula: see text] over the useful frequency range. The intersubject variability when estimating BSCs was less than 1.5 dB over the analysis frequency range. Further, the effectiveness of three scattering models (i.e., fluid sphere, Gaussian, and exponential form factors) when fitting the experimentally estimated BSCs was assessed. The exponential form factor was found to provide the best overall goodness of fit ( R2 = 0.917), followed by the Gaussian ( R2 = 0.807) and the fluid-sphere models ( R2 = 0.752). For all scattering models used in this study, average estimates of the effective scatterer diameter were between 44 and 56 µm. Overall, an excellent agreement in the estimated attenuation and BSCs with both scanners was exhibited.


Asunto(s)
Glándula Tiroides/diagnóstico por imagen , Ultrasonografía , Humanos , Distribución Normal , Fantasmas de Imagen
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3231-3234, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268996

RESUMEN

The minimum variance (MV) beamformer is a method that has the potential to enhance the resolution and contrast of ultrasound images. However, it suffers from sensitivity to speed of sound errors and aberration. Although there have been several studies on the application of phase aberration correction (PAC) methods to conventional delay-and-sum (DAS) beamforming, the benefits of PAC methods in mitigating the effects of phase aberration in MV beamformed images are not well understood. A study of this type would be helpful in designing a robust beamformer based on PAC knowledge present in the literature. This study analyzes three PAC algorithms (multi-lag cross-correlation, Rigby's beamsum and scaled covariance matrix) and their impact on the performance of the MV beamformer in the presence of second order phase aberrations. The PAC methods in combination with the MV beamformer were tested on simulated and experimental data corrupted with an electronically created near field phase aberrator. It is shown that all gains in performance of the MV beamformer with respect to DAS is lost at high aberration strengths. For instance, at 60 ns of aberration the lateral resolution of DAS degrades by 22% while MV degrades by 600%. It is also shown that basic PAC methods improve the aberrated MV beamformer. PAC methods reduces degradation in lateral resolution from 600% to 5%. Similar improvements are observed in peak sidelobe level (96% to 27%), contrast (88% to 49% for the simulations and 43% to 15% for experiments) and contrast-to-noise ratio (86% to 42% for the simulations and 68% to 55% for experiments). These enhancements allow the MV beamformer to outperform DAS even in the strongest aberration case.


Asunto(s)
Algoritmos , Ultrasonografía/métodos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3839-42, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26737131

RESUMEN

Sonoelastography is an ultrasonic technique that provides qualitative and quantitative images of tissue elasticity. Even though the Kasai variance estimator is a key part of the sonoelastographic image formation, there are no studies that demonstrate that its performance using discrete time signals and finite sized ensemble lengths is optimal. In this work, the influence of the selection of acquisition parameters (pulse repetition frequency or PRF, vibration frequency, and ensemble length) on the quality of the elastograms is studied. Simulations are carried out to define the optimal PRF and ensemble length given a vibration frequency in order to avoid artifacts which can severely degrade image quality. This empirical criterion is supported by sonoelastography experiments performed using two commercial scanners, where the variability increased from 4% to 42% at the worst selection of acquisition parameters. Although a further mathematical proof of the empirical findings is required, these results suggest that careful selection of PRF, vibration frequency and ensemble lengths is required to ensure unbiased sonoelastograms.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Bases de Datos Factuales , Humanos , Modelos Teóricos
10.
Med Phys ; 41(5): 052901, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24784401

RESUMEN

PURPOSE: Previous studies have provided the observation that the ultrasonic backscattered energy from a tissue region will change due to a change of temperature. The mechanism responsible for the changes in backscattered energy (CBE) with temperature has been hypothesized to be from the changes in scattering properties of local aqueous and lipid scatterers. An alternative mechanism is hypothesized here to be capable of producing similar CBE curves, i.e., changes in speckle resulting from changes in summation of scattered wavelets. METHODS: Both simulations and experiments were conducted with a 5.5 MHz, 128-element linear array and synthetic and physical phantoms containing randomly spaced scatterers. The speckle pattern resulting from summation of scattered wavelets was changed in simulations and experiments by directly increasing the background sound speed from 1520 to 1540 m/s, and changing the temperature from 37 °C to 48 °C, respectively. Shifts in the backscattered signal were compensated using 2D cross-correlation techniques. RESULTS: Excellent agreement between simulations and experiments was observed, with each pixel in the CBE images on average undergoing either a monotonic increase (up to 3.2 dB) or a monotonic decrease (down to -1.9 dB) with increasing sound speed or temperature. Similar CBE curves were also produced by shifting the image plane in the elevational and axial directions even after correcting for apparent motion. CONCLUSIONS: CBE curves were produced by changing the sound speed or temperature in tissue mimicking phantoms or by shifting the image plane in the elevational and axial directions and the production of these CBE curves did not require the presence of lipid and aqueous scatterers.


Asunto(s)
Temperatura , Ultrasonografía , Agar , Simulación por Computador , Vidrio , Modelos Teóricos , Fantasmas de Imagen , Ultrasonografía/instrumentación
11.
Ultrasound Med Biol ; 39(12): 2333-41, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24035621

RESUMEN

Currently, the evaluation of thyroid cancer relies on the use of fine-needle aspiration biopsy, as non-invasive imaging methods do not provide sufficient levels of accuracy for the diagnosis of this disease. In this study, the potential of quantitative ultrasound methods for characterization of thyroid tissues was studied using a rodent model ex vivo. A high-frequency ultrasonic scanning system (40 MHz) was used to scan thyroids extracted from mice that had spontaneously developed thyroid lesions (cancerous or benign). Three sets of mice were acquired having different predispositions to developing three thyroid anomalies: C-cell adenoma, papillary thyroid carcinoma (PTC) and follicular variant papillary thyroid carcinoma (FV-PTC). A fourth set of mice that did not develop thyroid anomalies (normal mice) were used as controls. The backscatter coefficient was estimated from excised thyroid lobes the different mice. From the backscatter coefficient versus frequency (25-45 MHz), the effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were estimated. From the envelope of the backscattered signal, the homodyned K distribution was used to estimate the k parameter (ratio of coherent to incoherent signal energy) and the µ parameter (number of scatterers per resolution cell). Statistically significant differences were observed between cancerous thyroids and normal thyroids based on the ESD, EAC and µ parameters. The mean ESD values were 18.0 ± 0.92, 15.9 ± 0.81 and 21.5 ± 1.80 µm for the PTC, FV-PTC and normal thyroids, respectively. The mean EAC values were 59.4 ± 1.74, 62.7 ± 1.61 and 52.9 ± 3.42 dB (mm(-3)) for the PTC, FV-PTC and normal thyroids, respectively. The mean µ values were 2.55 ± 0.37, 2.59 ± 0.43 and 1.56 ± 0.99 for the PTC, FV-PTC and normal thyroids, respectively. Statistically significant differences were observed between cancerous thyroids and C-cell adenomas based on the ESD and EAC parameters, with an estimated ESD value of 21.3 ± 1.50 µm and EAC value of 54.7 ± 2.24 dB mm(-3) for C-cell adenomas. These results suggest that high-frequency quantitative ultrasound may enhance the ability to detect and classify diseased thyroid tissues.


Asunto(s)
Algoritmos , Modelos Animales de Enfermedad , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias de la Tiroides/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Humanos , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Ultrason Imaging ; 34(4): 209-21, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23160474

RESUMEN

Backscatter and attenuation coefficient estimates are needed in many quantitative ultrasound strategies. In clinical applications, these parameters may not be easily obtained because of variations in scattering by tissues overlying a region of interest (ROI). The goal of this study is to assess the accuracy of backscatter and attenuation estimates for regions distal to nonuniform layers of tissue-mimicking materials. In addition, this work compares results of these estimates for "layered" phantoms scanned using different clinical ultrasound machines. Two tissue-mimicking phantoms were constructed, each exhibiting depth-dependent variations in attenuation or backscatter. The phantoms were scanned with three ultrasound imaging systems, acquiring radio frequency echo data for offline analysis. The attenuation coefficient and the backscatter coefficient (BSC) for sections of the phantoms were estimated using the reference phantom method. Properties of each layer were also measured with laboratory techniques on test samples manufactured during the construction of the phantom. Estimates of the attenuation coefficient versus frequency slope, α(0), using backscatter data from the different systems agreed to within 0.24 dB/cm-MHz. Bias in the α(0) estimates varied with the location of the ROI. BSC estimates for phantom sections whose locations ranged from 0 to 7 cm from the transducer agreed among the different systems and with theoretical predictions, with a mean bias error of 1.01 dB over the used bandwidths. This study demonstrates that attenuation and BSCs can be accurately estimated in layered inhomogeneous media using pulse-echo data from clinical imaging systems.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Ultrasonografía/métodos , Ondas de Choque de Alta Energía , Fantasmas de Imagen , Reproducibilidad de los Resultados , Dispersión de Radiación , Transductores , Ultrasonografía/instrumentación
13.
Ultrasound Med Biol ; 38(12): 2238-48, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23062376

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) affects more than 30% of Americans, and with increasing problems of obesity in the United States, NAFLD is poised to become an even more serious medical concern. At present, accurate classification of steatosis (fatty liver) represents a significant challenge. In this study, the use of high-frequency (8 to 25 MHz) quantitative ultrasound (QUS) imaging to quantify fatty liver was explored. QUS is an imaging technique that can be used to quantify properties of tissue giving rise to scattered ultrasound. The changes in the ultrasound properties of livers in rabbits undergoing atherogenic diets of varying durations were investigated using QUS. Rabbits were placed on a special fatty diet for 0, 3, or 6 weeks. The fattiness of the livers was quantified by estimating the total lipid content of the livers. Ultrasonic properties, such as speed of sound, attenuation, and backscatter coefficients, were estimated in ex vivo rabbit liver samples from animals that had been on the diet for varying periods. Two QUS parameters were estimated based on the backscatter coefficient: effective scatterer diameter (ESD) and effective acoustic concentration (EAC), using a spherical Gaussian scattering model. Two parameters were estimated based on the backscattered envelope statistics (the k parameter and the µ parameter) according to the homodyned K distribution. The speed of sound decreased from 1574 to 1565 m/s and the attenuation coefficient increased from 0.71 to 1.27 dB/cm/MHz, respectively, with increasing fat content in the liver. The ESD decreased from 31 to 17 µm and the EAC increased from 38 to 63 dB/cm(3) with increasing fat content in the liver. A significant increase in the µ parameter from 0.18 to 0.93 scatterers/mm(3) was observed with increasing fat content in the liver samples. The results of this study indicate that QUS parameters are sensitive to fat content in the liver.


Asunto(s)
Hígado Graso/diagnóstico por imagen , Animales , Hígado Graso/metabolismo , Técnicas In Vitro , Lípidos/análisis , Hígado/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico , Conejos , Ultrasonografía
14.
J Acoust Soc Am ; 132(3): 1319-24, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22978860

RESUMEN

A key step toward implementing quantitative ultrasound techniques in a clinical setting is demonstrating that parameters such as the ultrasonic backscatter coefficient (BSC) can be accurately estimated independent of the clinical imaging system used. In previous studies, agreement in BSC estimates for well characterized phantoms was demonstrated across different laboratory systems. The goal of this study was to compare the BSC estimates of a tissue mimicking sample measured using four clinical scanners, each providing RF echo data in the 1-15 MHz frequency range. The sample was previously described and characterized with single-element transducer systems. Using a reference phantom for analysis, excellent quantitative agreement was observed across the four array-based imaging systems for BSC estimates. Additionally, the estimates from data acquired with the clinical systems agreed with theoretical predictions and with estimates from laboratory measurements using single-element transducers.


Asunto(s)
Fantasmas de Imagen , Ultrasonido/instrumentación , Ultrasonografía/instrumentación , Agar , Diseño de Equipo , Geles , Vidrio , Modelos Teóricos , Dispersión de Radiación , Procesamiento de Señales Asistido por Computador , Transductores
15.
J Acoust Soc Am ; 131(3): 2295-305, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22423724

RESUMEN

Ultrasound contrast agents (UCAs) have been explored as a means to enhance therapeutic techniques. Because the effectiveness of these techniques relies on the UCA concentration at a target site, it would be beneficial to estimate UCA concentration noninvasively. In this study, a noninvasive method for estimating UCA concentration was developed in vitro. Backscatter coefficients (BSCs) estimated from measurements of Definity(®) UCAs were fitted to a theoretical scattering model in the 15-25 MHz range using a Levenberg-Marquardt regression technique. The model was defined by the UCA size distribution and concentration, and therefore concentration estimates were extracted directly from the fit. Calculation of the BSC was accomplished using planar reference measurements from the back wall of a Plexiglas(®) chamber and an average of 500 snapshots of ultrasonic backscatter from UCAs flowing through the chamber. In order to verify the ultrasonically derived UCA concentration estimates, a sample of the UCAs was extracted from the flow path and the concentration was estimated with a hemacytometer. UCA concentrations of 1, 2, and 5 times the dose recommended by the manufacturer were used in experiments. All BSC-based estimates were within one standard deviation of hemacytometer based estimates for peak rarefactional pressures of 100-400 kPa.


Asunto(s)
Medios de Contraste/química , Ultrasonido , Algoritmos , Vidrio , Modelos Teóricos , Tamaño de la Partícula , Fantasmas de Imagen , Dispersión de Radiación
16.
J Acoust Soc Am ; 129(5): 2903-11, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21568393

RESUMEN

The ultimate goal of quantitative ultrasound (QUS) imaging methods based on backscatter coefficient (BSC) estimates is to obtain system-independent structural information about samples. In the current study, three BSC estimation methods were compared and evaluated using the same backscattered pressure datasets in order to assess their consistency. BSC estimates were obtained from two phantoms with embedded glass spheres and compared to theoretical BSCs calculated using size distributions estimated using optical microscopy. Effective scatterer diameter and concentration estimates of the glass spheres were also obtained from the estimated BSCs. One estimation method needed to be compensated by more than an order of magnitude in amplitude in order to produce BSCs comparable to the other two methods. All calibration methods introduced different frequency-dependent effects, which could have noticeable effects on the bias of QUS estimates derived from experimental BSCs. Although in most cases the experimental QUS estimates obtained with all three methods were observed to differ by less than 10%, larger differences are expected depending on both the pressure focusing gain of the transducer (proportional to the ratio of the square of the aperture radius to the product of the wavelength and focal length) and ka range used in the estimation.


Asunto(s)
Transductores , Ultrasonografía/instrumentación , Agar , Algoritmos , Diseño de Equipo , Análisis de Fourier , Matemática , Microesferas , Tamaño de la Partícula , Fantasmas de Imagen
17.
Ultrason Imaging ; 33(4): 233-50, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22518954

RESUMEN

In vivo estimations of the frequency-dependent acoustic attenuation (alpha) and backscatter (eta) coefficients using radiofrequency (rf) echoes acquired with clinical ultrasound systems must be independent of the data acquisition setup and the estimation procedures. In a recent in vivo assessment of these parameters in rodent mammary tumors, overall agreement was observed among alpha and eta estimates using data from four clinical imaging systems. In some cases, particularly in highly-attenuating heterogeneous tumors, multisystem variability was observed. This paper compares alpha and eta estimates of a well-characterized rodent-tumor-mimicking homogeneous phantom scanned using seven transducers with the same four clinical imaging systems: a Siemens Acuson S2000, an Ultrasonix RP, a Zonare Z.one and a VisualSonics Vevo2100. alpha and eta estimates of lesion-mimicking spheres in the phantom were independently assessed by three research groups, who analyzed their system's rf echo signals. Imaging-system-based estimates of alpha and eta of both lesion-mimicking spheres were comparable to through-transmission laboratory estimates and to predictions using Faran's theory, respectively. A few notable variations in results among the clinical systems were observed but the average and maximum percent difference between alpha estimates and laboratory-assessed values was 11% and 29%, respectively. Excluding a single outlier dataset, the average and maximum average difference between eta estimates for the clinical systems and values predicted from scattering theory was 16% and 33%, respectively. These results were an improvement over previous interlaboratory comparisons of attenuation and backscatter estimates. Although the standardization of our estimation methodologies can be further improved, this study validates our results from previous rodent breast-tumor model studies.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Procesamiento de Señales Asistido por Computador/instrumentación , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Animales , Femenino , Ondas de Choque de Alta Energía , Interpretación de Imagen Asistida por Computador/métodos , Fantasmas de Imagen , Ratas , Dispersión de Radiación , Transductores , Ultrasonido/métodos
18.
J Acoust Soc Am ; 127(2): 645-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20136184

RESUMEN

The solution to the scattering of an incident pressure wave by an arrangement of eccentric cylinders embedded inside a pair of concentric cylinders is derived here using a combination of T-matrix and mode-matching approaches. This method allows the generation of synthetic data from relatively complex structures to be used for the validation of acoustic tomography methods. An application of the solution derived here is illustrated by reconstructing sound speed and density profiles from a complex phantom using inverse scattering.


Asunto(s)
Acústica , Tomografía/métodos , Algoritmos , Simulación por Computador , Fantasmas de Imagen , Presión , Reproducibilidad de los Resultados , Tomografía/instrumentación
19.
IEEE Trans Med Imaging ; 28(10): 1643-53, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19574162

RESUMEN

Although real imaging problems involve objects that have variations in three dimensions, a majority of work examining inverse scattering methods for ultrasonic tomography considers 2-D imaging problems. Therefore, the study of 3-D inverse scattering methods is necessary for future applications of ultrasonic tomography. In this work, 3-D reconstructions using different arrays of rectangular elements focused on elevation were studied when reconstructing spherical imaging targets by producing a series of 2-D image slices using the 2-D distorted Born iterative method (DBIM). The effects of focal number f/#, speed of sound contrast c, and scatterer size were considered. For comparison, the 3-D wave equation was also inverted using point-like transducers to produce fully 3-D DBIM image reconstructions. In 2-D slicing, blurring in the vertical direction was highly correlated with the transmit/receive elevation point-spread function of the transducers for low c. The eventual appearance of overshoot artifacts in the vertical direction were observed with increasing c. These diffraction-related artifacts were less severe for smaller focal number values and larger spherical target sizes. When using 3-D DBIM, the overshoot artifacts were not observed and spatial resolution was improved. However, results indicate that array configuration in 3-D reconstructions is important for good image reconstruction. Practical arrays were designed and assessed for image reconstruction using 3-D DBIM.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Ultrasonografía/métodos , Algoritmos , Simulación por Computador , Dispersión de Radiación , Transductores
20.
J Acoust Soc Am ; 125(2): 793-802, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19206857

RESUMEN

Inverse scattering is considered one of the most robust and accurate ultrasonic tomography methods. Most inverse scattering formulations neglect density changes in order to reconstruct sound speed and acoustic attenuation. Some studies available in literature suggest that density distributions can also be recovered using inverse scattering formulations. Two classes of algorithms have been identified. (1) The separation of sound speed and density contributions from reconstructions using constant density inverse scattering algorithms at multiple frequencies. (2) The inversion of the full wave equation including density changes. In this work, the performance of a representative algorithm for each class has been studied for the reconstruction of circular cylinders: the dual frequency distorted Born iterative method (DF-DBIM) and the T-matrix formulation. Root mean square error values lower than 30% were obtained with both algorithms when reconstructing cylinders up to eight wavelengths in diameter with moderate density changes. However, in order to provide accurate reconstructions the DF-DBIM and T-matrix method required very high signal-to-noise ratios and significantly large bandwidths, respectively. These limitations are discussed in the context of practical experimental implementations.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Modelos Teóricos , Ultrasonografía , Algoritmos , Artefactos , Movimiento (Física) , Presión , Dispersión de Radiación , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...