Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Inst Mech Eng H ; 237(7): 879-889, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37345411

RESUMEN

The purpose of this study was to create a preliminary set of experimentally validated Finite Element Analysis (FEA) models, in order to predict the dynamic mechanical behaviour of human articular cartilage (AC). Current models consider static loading with limited independent experimental validation, while the models for this study assess dynamic loading of AC, with direct comparison and validation to physical testing. Three different FEA models of AC were constructed, which considered both linear elastic and hyperelastic models; Neo-Hookean and Ogden. Models were validated using the data collected from compression testing of human femoral heads across 0-1.7 MPa (quasi-static tests and dynamic mechanical analysis). The linear elastic model was inadequate, with a 10-fold over prediction of the displacement dynamic amplitude. The Neo-Hookean model accurately predicted the dynamic amplitude but failed to predict the initial compression of the cartilage, with a 10 times overprediction. The Ogden model provided the best results, with both the initial compression lying within one standard deviation of that observed in the validation data set, and the dynamic amplitude of the same order of magnitude. In conclusion, this study has found that the fast dynamic response of human AC is best represented by a third order Ogden model.


Asunto(s)
Cartílago Articular , Humanos , Cartílago Articular/fisiología , Estrés Mecánico , Presión , Análisis de Elementos Finitos , Modelos Biológicos , Elasticidad , Fenómenos Biomecánicos
2.
BMC Musculoskelet Disord ; 20(1): 575, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31785617

RESUMEN

BACKGROUND: Despite it being known that subchondral bone affects the viscoelasticity of cartilage, there has been little research into the mechanical properties of osteochondral tissue as a whole system. This study aims to unearth new knowledge concerning the dynamic behaviour of human subchondral bone and how energy is transferred through the cartilage-bone interface. METHODS: Dynamic mechanical analysis was used to determine the frequency-dependent (1-90 Hz) viscoelastic properties of the osteochondral unit (cartilage-bone system) as well as isolated cartilage and bone specimens extracted from human femoral heads obtained from patients undergoing total hip replacement surgery, with a mean age of 78 years (N = 5, n = 22). Bone mineral density (BMD) was also determined for samples using micro-computed tomography as a marker of tissue health. RESULTS: Cartilage storage and loss moduli along with bone storage modulus were found to increase logarithmically (p < 0.05) with frequency. The mean cartilage storage modulus was 34.4 ± 3.35 MPa and loss modulus was 6.17 ± 0.48 MPa (mean ± standard deviation). In contrast, bone loss modulus decreased logarithmically between 1 and 90 Hz (p < 0.05). The storage stiffness of the cartilage-bone-core was found to be frequency-dependent with a mean value of 1016 ± 54.0 N.mm- 1, while the loss stiffness was determined to be frequency-independent at 78.84 ± 2.48 N.mm- 1. Notably, a statistically significant (p < 0.05) linear correlation was found between the total energy dissipated from the isolated cartilage specimens, and the BMD of the isolated bone specimens at all frequencies except at 90 Hz (p = 0.09). CONCLUSIONS: The viscoelastic properties of the cartilage-bone core were significantly different to the tissues in isolation (p < 0.05). Results from this study demonstrate that the functionality of these tissues arises because they operate as a unit. This is evidenced through the link between cartilage energy dissipated and bone BMD. The results may provide insights into the functionality of the osteochondral unit, which may offer further understanding of disease progression, such as osteoarthritis (OA). Furthermore, the results emphasise the importance of studying human tissue, as bovine models do not always display the same trends.


Asunto(s)
Densidad Ósea/fisiología , Cartílago Articular/patología , Cartílago Articular/fisiología , Elasticidad/fisiología , Cuello Femoral/patología , Cuello Femoral/fisiología , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Masculino , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA