Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3112, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600084

RESUMEN

Bell nonlocality refers to correlations between two distant, entangled particles that challenge classical notions of local causality. Beyond its foundational significance, nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation. Nonlocality quickly deteriorates in the presence of noise, and restoring nonlocal correlations requires additional resources. These often come in the form of many instances of the input state and joint measurements, incurring a significant resource overhead. Here, we experimentally demonstrate that single copies of Bell-local states, incapable of violating any standard Bell inequality, can give rise to nonlocality after being embedded into a quantum network of multiple parties. We subject the initial entangled state to a quantum channel that broadcasts part of the state to two independent receivers and certify the nonlocality in the resulting network by violating a tailored Bell-like inequality. We obtain these results without making any assumptions about the prepared states, the quantum channel, or the validity of quantum theory. Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications, even in scenarios dominated by noise.

2.
Phys Rev Lett ; 122(19): 190402, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31144943

RESUMEN

Quantum state smoothing is a technique for assigning a valid quantum state to a partially observed dynamical system, using measurement records both prior and posterior to an estimation time. We show that the technique is greatly simplified for linear Gaussian quantum systems, which have wide physical applicability. We derive a closed-form solution for the quantum smoothed state, which is more pure than the standard filtered state, while still being described by a physical quantum state, unlike other proposed quantum smoothing techniques. We apply the theory to an on-threshold optical parametric oscillator, exploring optimal conditions for purity recovery by smoothing. The role of quantum efficiency is elucidated, in both low and high efficiency limits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...