Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
mSystems ; 8(6): e0068823, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37942948

RESUMEN

IMPORTANCE: To our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn's disease disrupts the lives of patients and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms.


Asunto(s)
Brassica , Enfermedad de Crohn , Enterocolitis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedad de Crohn/prevención & control , Dieta
2.
Neurogastroenterol Motil ; 35(11): e14673, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37831752

RESUMEN

BACKGROUND: 5-hydroxytryptamine 4 receptors (5-HT4 Rs) are expressed in the colonic epithelium, and previous studies have demonstrated that luminal administration of agonists enhances motility, suppresses nociception, and is protective in models of inflammation. We investigated whether stimulation with a luminally acting 5-HT4 R agonist is comparable to previously tested absorbable compounds. METHODS: The dextran sodium sulfate (DSS), trinitrobenzene sulfonic acid (TNBS), and interleukin 10 knockout (IL-10KO) models of colitis were used to test the protective effects of the luminally acting 5-HT4 R agonist, 5HT4-LA1, in the absence and presence of a 5-HT4 R antagonist. The compounds were delivered by enema to mice either before (prevention) or after (recovery) the onset of active colitis. Outcome measure included disease activity index (DAI) and histological evaluation of colon tissue, and effects on wound healing and fecal water content were also assessed. KEY RESULTS: Daily enema of 5HT4-LA1 attenuated the development of, and accelerated recovery from, active colitis. Enema administration of 5HT4-LA1 did not attenuate the development of colitis in 5-HT4 R knockout mice. Stimulation of 5-HT4 Rs with 5HT4-LA1 increased Caco-2 cell migration (accelerated wound healing). Daily administration of 5HT4-LA1 did not increase fecal water content in active colitis. CONCLUSIONS AND INFERENCES: Luminally restricted 5-HT4 R agonists are comparable to absorbable compounds in attenuating and accelerating recovery from active colitis. Luminally acting 5-HT4 R agonists may be useful as an adjuvant to current inflammatory bowel disease (IBD) treatments to enhance epithelial healing.


Asunto(s)
Colitis , Serotonina , Humanos , Ratones , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Ratones Noqueados , Agua
3.
Neurogastroenterol Motil ; 35(10): e14629, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37357378

RESUMEN

BACKGROUND: An emerging strategy to treat symptoms of gastrointestinal (GI) dysmotility utilizes the administration of isolated bacteria. However, the underlying mechanisms of action of these bacterial agents are not well established. Here, we elucidate a novel approach to promote intestinal motility by exploiting the biochemical capability of specific bacteria to produce the serotonin (5-HT) precursor, tryptophan (Trp). METHODS: Mice were treated daily for 1 week by oral gavage of Bacillus (B.) subtilis (R0179), heat-inactivated R0179, or a tryptophan synthase-null strain of B. subtilis (1A2). Tissue levels of Trp, 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured and changes in motility were evaluated. KEY RESULTS: Mice treated with B. subtilis R0179 exhibited greater colonic tissue levels of Trp and the 5-HT breakdown product, 5-HIAA, compared to vehicle-treated mice. Furthermore, B. subtilis treatment accelerated colonic motility in both healthy mice as well as in a mouse model of constipation. These effects were not observed with heat-inactivated R0179 or the live 1A2 strain that does not express tryptophan synthase. Lastly, we found that the prokinetic effects of B. subtilis R0179 were blocked by coadministration of a 5-HT4 receptor (5-HT4 R) antagonist and were absent in 5-HT4 R knockout mice. CONCLUSIONS AND INFERENCES: Taken together, these data demonstrate that intestinal motility can be augmented by treatment with bacteria that synthesize Trp, possibly through increased 5-HT signaling and/or actions of Trp metabolites, and involvement of the 5-HT4 R. Our findings provide mechanistic insight into a transient and predictable bacterial strategy to promote GI motility.


Asunto(s)
Triptófano Sintasa , Triptófano , Ratones , Animales , Triptófano/farmacología , Serotonina/metabolismo , Ácido Hidroxiindolacético , Triptófano Sintasa/farmacología , Motilidad Gastrointestinal , Ratones Noqueados , Bacterias
4.
bioRxiv ; 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36747766

RESUMEN

Crohn's Disease (CD) is a presentation of Inflammatory Bowel Disease (IBD) that manifests in childhood and adolescence, and involves chronic and severe enterocolitis, immune and gut microbiome dysregulation, and other complications. Diet and gut-microbiota-produced metabolites are sources of anti-inflammatories which could ameliorate symptoms. However, questions remain on how IBD influences biogeographic patterns of microbial location and function in the gut, how early life transitional gut communities are affected by IBD and diet interventions, and how disruption to biogeography alters disease mediation by diet components or microbial metabolites. Many studies on diet and IBD use a chemically induced ulcerative colitis model, despite the availability of an immune-modulated CD model. Interleukin-10-knockout (IL-10-KO) mice on a C57BL/6 background, beginning at age 4 or 7 weeks, were fed a control diet or one containing 10% (w/w) raw broccoli sprouts, which was high in the sprout-sourced anti-inflammatory sulforaphane. Diets began 7 days prior to, and for 2 weeks after inoculation with Helicobacter hepaticus, which triggers Crohn's-like symptoms in these immune-impaired mice. The broccoli sprout diet increased sulforaphane in plasma; decreased weight stagnation, fecal blood, and diarrhea associated; and increased microbiota richness in the gut, especially in younger mice. Sprout diets resulted in some anatomically specific bacteria in younger mice, and reduced the prevalence and abundance of pathobiont bacteria which trigger inflammation in the IL-10-KO mouse, for example; Escherichia coli and Helicobacter. Overall, the IL-10-KO mouse model is responsive to a raw broccoli sprout diet and represents an opportunity for more diet-host-microbiome research.

5.
Chembiochem ; 24(2): e202200334, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394122

RESUMEN

Electrochemical arrays were used to measure the overflow of serotonin (5-HT) and melatonin (MEL) from the entire colon of healthy mice and mice with chemical-induced inflammatory bowel disease (IBD), to understand the interplay between inflammation and colonic function. We show that 5-HT overflow is increased, whilst MEL levels are reduced, in inflamed tissues. The levels of MEL are increased at the interface between healthy and inflamed regions within the colon and may limit the spread of inflammation. Understanding the interplay between inflammation and mucosal epithelial signalling can provide key insight into colonic function and aid the development of effective therapeutic strategies to treat gastrointestinal diseases.


Asunto(s)
Melatonina , Serotonina , Ratones , Animales , Mucosa Intestinal , Inflamación , Epitelio
6.
Adv Exp Med Biol ; 1383: 329-334, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36587170

RESUMEN

Because of their importance in the regulation of gut functions, several therapeutic targets involving serotonin-related proteins have been developed or repurposed to treat motility disorders, including serotonin transporter inhibitors, tryptophan hydroxylase blockers, 5-HT3 antagonists, and 5-HT4 agonists. This chapter focuses on our discovery of 5-HT4 receptors in the epithelial cells of the colon and our efforts to evaluate the effects of stimulating these receptors. 5-HT4 receptors appear to be expressed by all epithelial cells in the mouse colon, based on expression of a reporter gene driven by the 5-HT4 receptor promoter. Application of 5-HT4 agonists to the mucosal surface causes serotonin release from enterochromaffin cells, mucus secretion from goblet cells, and chloride secretion from enterocytes. Luminal administration of 5-HT4 agonists speeds up colonic motility and suppresses distention-induced nociceptive responses. Luminal administration of 5-HT4 agonists also decreases the development of, and improves recovery from, experimental colitis. Recent studies determined that the prokinetic actions of minimally absorbable 5-HT4 agonists are just as effective as absorbable compounds. Collectively, these findings indicate that targeting epithelial receptors with non-absorbable 5-HT4 agonists could offer a safe and effective strategy for treating constipation and colitis.


Asunto(s)
Colitis , Serotonina , Ratones , Animales , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Agonistas del Receptor de Serotonina 5-HT4/uso terapéutico , Agonistas del Receptor de Serotonina 5-HT4/metabolismo , Estreñimiento/tratamiento farmacológico , Receptores de Serotonina 5-HT4/metabolismo , Colon/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inflamación/metabolismo , Motilidad Gastrointestinal/fisiología
7.
Neurogastroenterol Motil ; 34(10): e14346, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35246905

RESUMEN

Mounting evidence highlights the pivotal role of enteric microbes as a dynamic interface with the host. Indeed, the gut microbiota, located in the lumen of the gastrointestinal (GI) tract, influence many essential physiological processes that are evident in both healthy and pathological states. A key signaling molecule throughout the body is serotonin (5-hydroxytryptamine; 5-HT), which acts in the GI tract to regulate numerous gut functions including intestinal motility and secretion. The gut microbiota can modulate host 5-HT systems both directly and indirectly. Direct actions of gut microbes, evidenced by studies using germ-free animals or antibiotic administration, alter the expression of key 5-HT-related genes to promote 5-HT biosynthesis. Indirectly, the gut microbiota produce numerous microbial metabolites, whose actions can influence host serotonergic systems in a variety of ways. This review summarizes the current knowledge regarding mechanisms by which gut bacteria act to regulate host 5-HT and 5-HT-mediated gut functions, as well as implications for 5-HT in the microbiota-gut-brain axis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Antibacterianos , Motilidad Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Microbiota/fisiología , Serotonina/metabolismo
8.
BMC Gastroenterol ; 21(1): 281, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238227

RESUMEN

BACKGROUND: Fecal microbiota transplantation (FMT) is a promising new strategy in the treatment of Inflammatory Bowel Disease, but long-term delivery systems are lacking. This randomized study was designed as a safety and feasibility study of long-term FMT in subjects with mild to moderate UC using frozen, encapsulated oral FMT (cFMT). METHODS: Subjects were randomized 1:1 to receive FMT induction by colonoscopy, followed by 12 weeks of daily oral administration of frozen encapsulated cFMT or sham therpay. Subjects were followed for 36 weeks and longitudenal clinical assessments included multiple subjective and objective markers of disease severity. Ribosomal 16S bacterial sequencing was used to assess donor-induced changes in the gut microbiota. Changes in T regulatory (Treg) and mucosal associated invariant T (MAIT) cell populations were evaluated by flow cytometry as an exploratory endpoint. RESULTS: Twelve subjects with active UC were randomized: 6 subjects completed the full 12-week course of FMT plus cFMT, and 6 subjects received sham treatment by colonic installation and longitudinal oral placebo capules. Chronic administration of cFMT was found to be safe and well-tolerated but home storage concerns exist. Protocol adherence was high, and none of the study subjects experienced FMT-associated treatment emergent adverse events. Two subjects that received cFMT achieved clinical remission versus none in the placebo group (95% CI = 0.38-infinity, p = 0.45). cFMT was associated with sustained donor-induced shifts in fecal microbial composition. Changes in MAIT cell cytokine production were observed in cFMT recipients and correlated with treatment response. CONCLUSION: These pilot data suggest that daily encapsulated cFMT may extend the durability of index FMT-induced changes in gut bacterial community structure and that an association between MAIT cell cytokine production and clinical response to FMT may exist in UC populations. Oral frozen encapsulated cFMT is a promising FMT delivery system and may be preferred for longterm treatment strategies in UC and other chronic diseases but further evaluations will have to address home storage concerns. Larger trials should be done to explore the benefits of cFMT and to determine its long-term impacts on the colonic microbiome. TRIAL REGISTRATION: ClinicalTrials.gov (NCT02390726). Registered 17 March 2015, https://clinicaltrials.gov/ct2/show/NCT02390726?term=NCT02390726&draw=2&rank=1 .


Asunto(s)
Colitis Ulcerosa , Trasplante de Microbiota Fecal , Colitis Ulcerosa/terapia , Heces , Humanos , Proyectos Piloto , Estudios Prospectivos , Resultado del Tratamiento
9.
Nat Commun ; 12(1): 2409, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893302

RESUMEN

During cytokinesis, the actin cytoskeleton is partitioned into two spatially distinct actin isoform specific networks: a ß-actin network that generates the equatorial contractile ring, and a γ-actin network that localizes to the cell cortex. Here we demonstrate that the opposing regulation of the ß- and γ-actin networks is required for successful cytokinesis. While activation of the formin DIAPH3 at the cytokinetic furrow underlies ß-actin filament production, we show that the γ-actin network is specifically depleted at the cell poles through the localized deactivation of the formin DIAPH1. During anaphase, CLIP170 is delivered by astral microtubules and displaces IQGAP1 from DIAPH1, leading to formin autoinhibition, a decrease in cortical stiffness and localized membrane blebbing. The contemporaneous production of a ß-actin contractile ring at the cell equator and loss of γ-actin from the poles is required to generate a stable cytokinetic furrow and for the completion of cell division.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citocinesis , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Centrosoma/metabolismo , Forminas/genética , Forminas/metabolismo , Células HeLa , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
10.
Neurogastroenterol Motil ; 33(4): e14026, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33185015

RESUMEN

BACKGROUND: 5-HT4 receptor (5-HT4 R) agonists exert prokinetic actions in the GI tract, but non-selective actions and potential for stimulation of non-target 5-HT4 Rs have limited their use. Since 5-HT4 Rs are expressed in the colonic epithelium and their stimulation accelerates colonic propulsion in vitro, we tested whether luminally acting 5-HT4 R agonists promote intestinal motility. METHODS: Non-absorbed 5-HT4 R agonists, based on prucalopride and naronapride, were assessed for potency at the 5-HT4 R in vitro, and for tissue and serum distribution in vivo in mice. In vivo assessment of prokinetic potential included whole gut transit, colonic motility, fecal output, and fecal water content. Colonic motility was also studied ex vivo in mice treated in vivo. Immunofluorescence was used to evaluate receptor distribution in human intestinal mucosa. KEY RESULTS: Pharmacological screening demonstrated selectivity and potency of test agonists for 5-HT4 R. Bioavailability studies showed negligible serum detection. Gavage of agonists caused faster whole gut transit and colonic motility, increased fecal output, and elevated fecal water content. Prokinetic actions were blocked by a 5-HT4 R antagonist and were not detected in 5-HT4 R knockout mice. Agonist administration promoted motility in models of constipation. Evaluation of motility patterns ex vivo revealed enhanced contractility in the middle and distal colon. Immunoreactivity for 5-HT4 R is present in the epithelial layer of the human small and large intestines. CONCLUSIONS AND INFERENCES: These findings demonstrated that stimulation of epithelial 5-HT4 Rs can potentiate propulsive motility and support the concept that mucosal 5-HT4 Rs could represent a safe and effective therapeutic target for the treatment of constipation.


Asunto(s)
Colon/fisiología , Motilidad Gastrointestinal/fisiología , Mucosa Intestinal/fisiología , Receptores de Serotonina 5-HT4/fisiología , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Animales , Células CHO , Colon/efectos de los fármacos , Estreñimiento/tratamiento farmacológico , Estreñimiento/fisiopatología , Cricetinae , Cricetulus , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Agonistas del Receptor de Serotonina 5-HT4/uso terapéutico
11.
Genes Immun ; 21(5): 311-325, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32848229

RESUMEN

Inflammatory bowel disease (IBD) is a complex disorder that imposes a growing health burden. Multiple genetic associations have been identified in IBD, but the mechanisms underlying many of these associations are poorly understood. Animal models are needed to bridge this gap, but conventional laboratory mouse strains lack the genetic diversity of human populations. To more accurately model human genetic diversity, we utilized a panel of chromosome (Chr) substitution strains, carrying chromosomes from the wild-derived and genetically divergent PWD/PhJ (PWD) strain on the commonly used C57BL/6J (B6) background, as well as their parental B6 and PWD strains. Two models of IBD were used, TNBS- and DSS-induced colitis. Compared with B6 mice, PWD mice were highly susceptible to TNBS-induced colitis, but resistant to DSS-induced colitis. Using consomic mice, we identified several PWD-derived loci that exhibited profound effects on IBD susceptibility. The most pronounced of these were loci on Chr1 and Chr2, which yielded high susceptibility in both IBD models, each acting at distinct phases of the disease. Leveraging transcriptomic data from B6 and PWD immune cells, together with a machine learning approach incorporating human IBD genetic associations, we identified lead candidate genes, including Itga4, Pip4k2a, Lcn10, Lgmn, and Gpr65.


Asunto(s)
Colitis Ulcerosa/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Animales , Colitis Ulcerosa/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Polimorfismo Genético , Transcriptoma
12.
J Biol Chem ; 295(10): 3134-3147, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32005666

RESUMEN

The actin cytoskeleton is a dynamic array of filaments that undergoes rapid remodeling to drive many cellular processes. An essential feature of filament remodeling is the spatio-temporal regulation of actin filament nucleation. One family of actin filament nucleators, the Diaphanous-related formins, is activated by the binding of small G-proteins such as RhoA. However, RhoA only partially activates formins, suggesting that additional factors are required to fully activate the formin. Here we identify one such factor, IQ motif containing GTPase activating protein-1 (IQGAP1), which enhances RhoA-mediated activation of the Diaphanous-related formin (DIAPH1) and targets DIAPH1 to the plasma membrane. We find that the inhibitory intramolecular interaction within DIAPH1 is disrupted by the sequential binding of RhoA and IQGAP1. Binding of RhoA and IQGAP1 robustly stimulates DIAPH1-mediated actin filament nucleation in vitro In contrast, the actin capping protein Flightless-I, in conjunction with RhoA, only weakly stimulates DIAPH1 activity. IQGAP1, but not Flightless-I, is required to recruit DIAPH1 to the plasma membrane where actin filaments are generated. These results indicate that IQGAP1 enhances RhoA-mediated activation of DIAPH1 in vivo Collectively these data support a model where the combined action of RhoA and an enhancer ensures the spatio-temporal regulation of actin nucleation to stimulate robust and localized actin filament production in vivo.


Asunto(s)
Actinas/metabolismo , Forminas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Forminas/antagonistas & inhibidores , Forminas/genética , Humanos , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Activadoras de ras GTPasa/antagonistas & inhibidores , Proteínas Activadoras de ras GTPasa/genética , Proteína de Unión al GTP rhoA/metabolismo
13.
Headache ; 60(2): 396-404, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31876298

RESUMEN

OBJECTIVE: To determine whether transgenic mouse models of migraine exhibit upper gastrointestinal dysmotility comparable to those observed in migraine patients. BACKGROUND: There is considerable evidence supporting the comorbidity of gastrointestinal dysmotility and migraine. Gastrointestinal motility, however, has never been investigated in transgenic mouse models of migraine. METHODS: Three transgenic mouse strains that express pathogenic gene mutations linked to monogenic migraine-relevant phenotypes were studied: CADASIL (Notch3-Tg88), FASP (CSNK1D-T44A), and FHM1 (CACNA1A-S218L). Upper gastrointestinal motility was quantified by measuring gastric emptying and small intestinal transit in mutant and control animals. Gastrointestinal motility was measured at baseline and after pretreatment with 10 mg/kg nitroglycerin (NTG). RESULTS: No significant differences were observed for gastric emptying or small intestinal transit at baseline for any of the 3 transgenic strains when compared to appropriate controls or after pretreatment with NTG when compared to vehicle. CONCLUSIONS: We detected no evidence of upper gastrointestinal dysmotility in mice that express mutations in genes linked to monogenic migraine-relevant phenotypes. Future studies seeking to understand why humans with migraine experience delayed gastric emptying may benefit from pursuing other modifiers of gastrointestinal motility, such as epigenetic or microbiome-related factors.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Gastrointestinales , Motilidad Gastrointestinal , Trastornos Migrañosos , Animales , Femenino , Enfermedades Gastrointestinales/etiología , Masculino , Ratones , Ratones Transgénicos , Trastornos Migrañosos/complicaciones , Trastornos Migrañosos/genética
14.
J Biol Chem ; 294(49): 18639-18649, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31653703

RESUMEN

Rigorous spatiotemporal regulation of cell division is required to maintain genome stability. The final stage in cell division, when the cells physically separate (abscission), is tightly regulated to ensure that it occurs after cytokinetic events such as chromosome segregation. A key regulator of abscission timing is Aurora B kinase activity, which inhibits abscission and forms the major activity of the abscission checkpoint. This checkpoint prevents abscission until chromosomes have been cleared from the cytokinetic machinery. Here we demonstrate that the mitosis-specific CDK11p58 kinase specifically forms a complex with cyclin L1ß that, in late cytokinesis, localizes to the stem body, a structure in the middle of the intercellular bridge that forms between two dividing cells. Depletion of CDK11 inhibits abscission, and rescue of this phenotype requires CDK11p58 kinase activity or inhibition of Aurora B kinase activity. Furthermore, CDK11p58 kinase activity is required for formation of endosomal sorting complex required for transport III filaments at the site of abscission. Combined, these data suggest that CDK11p58 kinase activity opposes Aurora B activity to enable abscission to proceed and result in successful completion of cytokinesis.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Western Blotting , División Celular/genética , División Celular/fisiología , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Citocinesis/genética , Citocinesis/fisiología , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Mitosis/genética , Mitosis/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Imagen de Lapso de Tiempo
15.
Psychiatr Rehabil J ; 42(2): 158-168, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30570271

RESUMEN

OBJECTIVE: Self-management support is recognized as an important component of the management of mood and anxiety disorders. The goal of this feasibility study was to evaluate the acceptability, implementation and perceived usefulness of a new comprehensive self-management tool (Getting better my way) in four care settings in Quebec, Canada. METHOD: Care providers offered the tool to people with difficulties related to mood or anxiety disorders during a 7-month period. A sample of 71 participants filled out an online survey and 27 accepted to participate in a follow-up interview. Focus groups were conducted with 82 care providers. RESULTS: Satisfaction ratings were high for the tool overall, the likelihood of recommending it to friends, its attractiveness and interest, and its completion time. Perceived usefulness was high overall and was not related to most demographic and clinical variables. No adverse effects were reported. CONCLUSION AND IMPLICATIONS FOR PRACTICE: The study highlights that Getting better my way is a comprehensive recovery-oriented tool, considered useful, acceptable and feasible to use in a variety of settings offering services for mood and anxiety disorders. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Trastornos de Ansiedad/terapia , Servicios de Salud Mental , Trastornos del Humor/terapia , Folletos , Aceptación de la Atención de Salud , Automanejo/métodos , Adolescente , Adulto , Anciano , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Investigación Cualitativa , Quebec , Adulto Joven
17.
Adv Exp Med Biol ; 1033: 35-46, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29101650

RESUMEN

The processes of bone growth and turnover are tightly regulated by the actions of various signaling molecules, including hormones, growth factors, and cytokines. Imbalances in these processes can lead to skeletal disorders such as osteoporosis or high bone mass disease. It is becoming increasingly clear that serotonin can act through a number of mechanisms, and at different locations in the body, to influence the balance between bone formation and resorption. Its actions on bone metabolism can vary, based on its site of synthesis (central or peripheral) as well as the cells and subtypes of receptors that are activated. Within the central nervous system, serotonergic neurons act via the hypothalamus to suppress sympathetic input to the bone. Since sympathetic input inhibits bone formation, brain serotonin has a net positive effect on bone growth. Gut-derived serotonin is thought to inhibit bone growth by attenuating osteoblast proliferation via activation of receptors on pre-osteoblasts. There is also evidence that serotonin can be synthesized within the bone and act to modulate bone metabolism. Osteoblasts, osteoclasts, and osteocytes all have the machinery to synthesize serotonin, and they also express the serotonin-reuptake transporter (SERT). Understanding the roles of serotonin in the tightly balanced system of bone modeling and remodeling is a clinically relevant goal. This knowledge can clarify bone-related side effects of drugs that affect serotonin signaling, including serotonin-specific reuptake inhibitors (SSRIs) and receptor agonists and antagonists, and it can potentially lead to therapeutic approaches for alleviating bone pathologies.


Asunto(s)
Huesos/metabolismo , Osteogénesis/fisiología , Serotonina/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Osteogénesis/efectos de los fármacos , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
18.
Am J Mens Health ; 11(6): 1680-1691, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29073845

RESUMEN

Despite the importance of healthy settings for health promotion, little is known about how neighborhood characteristics affect men's health. The present study aims to explore the associations between perceptions of home and workplace neighborhoods with diverse health outcomes, and to examine mediating mechanisms. A sample of 669 men members of labor unions in Quebec, Canada, completed a questionnaire assessing social and physical aspects of their work and home neighborhoods (the Health-Promoting Neighborhood Questionnaire) as well as subjective and objective health outcomes (perceived health, positive mental health, body mass index) and potential mediators (health behaviors, self-efficacy). Structural equation modeling (path analysis) revealed that the Health-Promoting Neighborhood Questionnaire was associated with all three health outcomes, either directly or indirectly through health behaviors and self-efficacy. Both home and workplace neighborhoods were associated with men's health, home neighborhood being more strongly associated. The findings suggest that physical and social aspects of neighborhood might contribute to men's health. The study highlights positive environmental levers for urban planners, policy makers, and health professionals to promote men's health.


Asunto(s)
Conductas Relacionadas con la Salud , Promoción de la Salud , Salud del Hombre , Lugar de Trabajo , Adulto , Humanos , Masculino , Persona de Mediana Edad , Quebec , Encuestas y Cuestionarios , Adulto Joven
19.
Am J Mens Health ; 11(5): 1569-1579, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28670962

RESUMEN

Men are generally thought to be less inclined to take care of their health. To date, most studies about men's health have focused on deficits in self-care and difficulties in dealing with this sphere of their life. The present study reframes this perspective, using a salutogenic strengths-based approach and seeking to identify variables that influence men to take care of their health, rather than neglect it. This study focuses on the association between peer positive social control and men's health behaviors, while controlling for other important individual and social determinants (sociodemographic characteristics, health self-efficacy, home neighborhood, spousal positive social control, and the restrictive emotionality norm). In a mixed-method study, 669 men answered a self-reported questionnaire, and interviews were conducted with a maximum variation sample of 31 men. Quantitative results indicated that, even after controlling for sociodemographic variables and other important factors, peer positive social control was significantly associated with the six health behaviors measured in the study (health responsibility, nutrition, physical activity, interpersonal relations, stress management, and spirituality). Interview results revealed that peer positive social control influenced men's health behaviors through three different mechanisms: shared activity, being inspired, and serving as a positive role model for others. In summary, friends and coworkers could play a significant role in promoting various health behaviors among adult men in their daily life. Encouraging men to socialize and discuss health, and capitalizing on healthy men as role models appear to be effective ways to influence health behavior adoption among this specific population.


Asunto(s)
Promoción de la Salud , Salud del Hombre , Grupo Paritario , Conducta de Reducción del Riesgo , Controles Informales de la Sociedad , Adulto , Humanos , Masculino , Masculinidad , Persona de Mediana Edad , Autocuidado , Autoinforme
20.
Mol Metab ; 6(6): 503-511, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28580281

RESUMEN

OBJECTIVE: Glucagon-like peptides (GLPs) are secreted from enteroendocrine cells in response to nutrients and bile acids and control metabolism via actions on structurally-related yet distinct G protein coupled receptors. GLP-1 regulates gut motility, appetite, islet function, and glucose homeostasis, whereas GLP-2 enhances intestinal nutrient absorption. GLP-1R agonists are used to treat diabetes and obesity, and a GLP-2R agonist is approved to treat short bowel syndrome. Unexpectedly, reports of gallbladder disease have been associated with the use of both GLP-1R and GLP-2R agonists and after bariatric surgery, although the mechanisms remain unknown. METHODS: We investigated whether GLP-1 or GLP-2 acutely controls gallbladder (GB) volume and whether GLP-2 regulates GB muscle activity in mice. The expression of Tgr5, Glp2r, and Glp1r was assessed in mouse GB, and the effects of GLP-2 on hepatic bile acid (BA) flow, intestinal and liver BA uptake, and GB gene expression were determined. GLP-2 regulation of GB volume was assessed in wildtype, Glp2r-/- and Tgr5-/- mice. The effect of GLP-2 on GB smooth muscle (GBSM) calcium transients was characterized ex vivo. RESULTS: Acute administration of the GLP-1R agonist exendin-4 lowered glucose but had no effect on GB volume in mice. In contrast, GLP-2 rapidly enhanced GB filling in a dose-dependent manner, actions maintained in the presence of cholecystokinin, and mediated through the canonical GLP-2R. GLP-2 also rapidly induced immediate early gene expression in GB, consistent with detection of the endogenous Glp2r in GB RNA. The ability of GLP-2 to increase GB volume was not abrogated by systemic administration of hexamethonium, propranolol, a vasoactive peptide receptor antagonist or N-Nitroarginine methyl ester, and was maintained in Tgr5-/- mice. In contrast, lithocholic acid, a Tgr5 agonist, increased GB filling in Glp2r-/- but not in Tgr5-/- mice. GLP-2 had no effect on ileal uptake or hepatic clearance of taurocholic acid or on hepatic bile flow, yet reduced the frequency of spontaneous calcium transients in murine GBSM ex vivo, in a tetrodotoxin-sensitive manner. CONCLUSIONS: Our data extend endocrine concepts of regulation of GB filling beyond FXR-FGF15/19 and the direct effects of BA via Tgr5, to encompass a novel BA-Tgr5-L cell GLP-2 axis providing nutrient-mediated feedback from BA to terminate meal-related GB contraction. These findings have implications for conditions characterized by elevated circulating levels of GLP-2 such as after bariatric surgery and the development and use of agents that promote Tgr5 activation, L cell secretion, or GLP-2R agonism for the treatment of metabolic disease.


Asunto(s)
Vesícula Biliar/efectos de los fármacos , Fármacos Gastrointestinales/farmacología , Receptor del Péptido 2 Similar al Glucagón/metabolismo , Péptidos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Vesícula Biliar/metabolismo , Vesícula Biliar/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...