Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 40(1): 111031, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793621

RESUMEN

EPH receptors (EPHRs) constitute the largest family among receptor tyrosine kinases in humans. They are mainly involved in short-range cell-cell communication events that regulate cell adhesion, migration, and boundary formation. However, the molecular mechanisms by which EPHRs control these processes are less understood. To address this, we unravel EPHR-associated complexes under native conditions using mass-spectrometry-based BioID proximity labeling. We obtain a composite proximity network from EPHA4, -B2, -B3, and -B4 that comprises 395 proteins, most of which were not previously linked to EPHRs. We examine the contribution of several BioID-identified candidates via loss-of-function in an EPHR-dependent cell-segregation assay. We find that the signaling scaffold PAR-3 is required for cell sorting and that EPHRs directly phosphorylate PAR-3. We also delineate a signaling complex involving the C-terminal SRC kinase (CSK), whose recruitment to PAR-3 is dependent on EPHR signals. Our work describes signaling networks by which EPHRs regulate cellular phenotypes.


Asunto(s)
Receptores de la Familia Eph , Transducción de Señal , Proteína Tirosina Quinasa CSK , Comunicación Celular , Programas Informáticos
2.
Cells ; 10(10)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34685619

RESUMEN

The cochaperone BCL2-associated athanogene 3 (BAG3), in complex with the heat shock protein HSPB8, facilitates mitotic rounding, spindle orientation, and proper abscission of daughter cells. BAG3 and HSPB8 mitotic functions implicate the sequestosome p62/SQSTM1, suggesting a role for protein quality control. However, the interplay between this chaperone-assisted pathway and the mitotic machinery is not known. Here, we show that BAG3 phosphorylation at the conserved T285 is regulated by CDK1 and activates its function in mitotic cell shape remodeling. BAG3 phosphorylation exhibited a high dynamic at mitotic entry and both a non-phosphorylatable BAG3T285A and a phosphomimetic BAG3T285D protein were unable to correct the mitotic defects in BAG3-depleted HeLa cells. We also demonstrate that BAG3 phosphorylation, HSPB8, and CDK1 activity modulate the molecular assembly of p62/SQSTM1 into mitotic bodies containing K63 polyubiquitinated chains. These findings suggest the existence of a mitotically regulated spatial quality control mechanism for the fidelity of cell shape remodeling in highly dividing cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína Quinasa CDC2/metabolismo , Forma de la Célula , Cuerpos de Inclusión/metabolismo , Mitosis , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/química , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Fosforilación , Fosfoserina/metabolismo
3.
Autophagy ; 17(9): 2494-2510, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33030392

RESUMEN

Dominant de novo mutations in the co-chaperone BAG3 cause a severe form of myofibrillar myopathy, exhibiting progressive muscle weakness, muscle structural failure, and protein aggregation. To elucidate the mechanism of disease in, and identify therapies for, BAG3 myofibrillar myopathy, we generated two zebrafish models, one conditionally expressing BAG3P209L and one with a nonsense mutation in bag3. While transgenic BAG3P209L-expressing fish display protein aggregation, modeling the early phase of the disease, bag3-/- fish exhibit exercise dependent fiber disintegration, and reduced swimming activity, consistent with later stages of the disease. Detailed characterization of the bag3-/- fish, revealed an impairment in macroautophagic/autophagic activity, a defect we confirmed in BAG3 patient samples. Taken together, our data highlights that while BAG3P209L expression is sufficient to promote protein aggregation, it is the loss of BAG3 due to its sequestration within aggregates, which results in impaired autophagic activity, and subsequent muscle weakness. We therefore screened autophagy-promoting compounds for their effectiveness at removing protein aggregates, identifying nine including metformin. Further evaluation demonstrated metformin is not only able to bring about the removal of protein aggregates in zebrafish and human myoblasts but is also able to rescue the fiber disintegration and swimming deficit observed in the bag3-/- fish. Therefore, repurposing metformin provides a promising therapy for BAG3 myopathy.Abbreviations:ACTN: actinin, alpha; BAG3: BAG cochaperone 3; CRYAB: crystallin alpha B; DES: desmin; DMSO: dimethyl sulfoxide; DNAJB6: DnaJ heat shock protein family (Hsp40) member B6; dpf: days post fertilization; eGFP: enhanced green fluorescent protein; FDA: Food and Drug Administration; FHL1: four and a half LIM domains 1; FLNC: filamin C; hpf: hours post-fertilization; HSPB8: heat shock protein family B [small] member 8; LDB3/ZASP: LIM domain binding 3; MYOT: myotilin; TTN: titin; WT: wild-type.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Metformina , Miopatías Estructurales Congénitas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM , Metformina/farmacología , Chaperonas Moleculares/metabolismo , Proteínas Musculares , Músculos/metabolismo , Mutación , Miopatías Estructurales Congénitas/genética , Proteínas del Tejido Nervioso/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra
4.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375626

RESUMEN

The fidelity of actin dynamics relies on protein quality control, but the underlying molecular mechanisms are poorly defined. During mitosis, the cochaperone BCL2-associated athanogene 3 (BAG3) modulates cell rounding, cortex stability, spindle orientation, and chromosome segregation. Mitotic BAG3 shows enhanced interactions with its preferred chaperone partner HSPB8, the autophagic adaptor p62/SQSTM1, and HDAC6, a deacetylase with cytoskeletal substrates. Here, we show that depletion of BAG3, HSPB8, or p62/SQSTM1 can recapitulate the same inhibition of mitotic cell rounding. Moreover, depletion of either of these proteins also interfered with the dynamic of the subcortical actin cloud that contributes to spindle positioning. These phenotypes were corrected by drugs that limit the Arp2/3 complex or HDAC6 activity, arguing for a role for BAG3 in tuning branched actin network assembly. Mechanistically, we found that cortactin acetylation/deacetylation is mitotically regulated and is correlated with a reduced association of cortactin with HDAC6 in situ. Remarkably, BAG3 depletion hindered the mitotic decrease in cortactin-HDAC6 association. Furthermore, expression of an acetyl-mimic cortactin mutant in BAG3-depleted cells normalized mitotic cell rounding and the subcortical actin cloud organization. Together, these results reinforce a BAG3's function for accurate mitotic actin remodeling, via tuning cortactin and HDAC6 spatial dynamics.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Cortactina/metabolismo , Proteínas de Choque Térmico/metabolismo , Histona Desacetilasa 6/metabolismo , Mitosis , Chaperonas Moleculares/metabolismo , Acetilación , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Activación Enzimática , Humanos , Unión Proteica
5.
Cell Cycle ; 19(22): 2963-2981, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33103553

RESUMEN

The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.


Asunto(s)
Carcinogénesis/metabolismo , Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Estrés Mecánico , Proteínas Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Drosophila/metabolismo , Vía de Señalización Hippo/metabolismo , Humanos , Neoplasias/patología , Fenotipo , Mapas de Interacción de Proteínas , Proteína Fosfatasa 2/metabolismo
6.
J Cell Biol ; 219(4)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32328642

RESUMEN

The tumor cell-selective killing activity of the adenovirus type 2 early region 4 ORF4 (E4orf4) protein is poorly defined at the molecular level. Here, we show that the tumoricidal effect of E4orf4 is typified by changes in nuclear dynamics that depend on its interaction with the polarity protein Par3 and actomyosin contractility. Mechanistically, E4orf4 induced a high incidence of nuclear bleb formation and repetitive nuclear ruptures, which promoted nuclear efflux of E4orf4 and loss of nuclear integrity. This process was regulated by nucleocytoskeletal connections, Par3 clustering proximal to nuclear lamina folds, and retrograde movement of actin bundles that correlated with nuclear ruptures. Significantly, Par3 also regulated the incidence of spontaneous nuclear ruptures facilitated by the downmodulation of lamins. This work uncovered a novel role for Par3 in controlling the actin-dependent forces acting on the nuclear envelope to remodel nuclear shape, which might be a defining feature of tumor cells that is harnessed by E4orf4.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Virales/metabolismo , Muerte Celular , Células HEK293 , Células HeLa , Humanos
7.
Am J Pathol ; 190(3): 554-562, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31953038

RESUMEN

BCL-2-associated athanogene 3 (BAG3) is a co-chaperone to heat shock proteins important in degrading misfolded proteins through chaperone-assisted selective autophagy. The recurrent dominant BAG3-P209L mutation results in a severe childhood-onset myofibrillar myopathy (MFM) associated with progressive muscle weakness, cardiomyopathy, and respiratory failure. Because a homozygous knock-in (KI) strain for the mP215L mutation homologous to the human P209L mutation did not have a gross phenotype, compound heterozygote knockout (KO) and KI mP215L mice were generated to establish whether further reduction in BAG3 expression would lead to a phenotype. The KI/KO mice have a significant decrease in voluntary movement compared with wild-type and KI/KI mice in the open field starting at 7 months. The KI/KI and KI/KO mice both have significantly smaller muscle fiber cross-sectional area. However, only the KI/KO mice have clear skeletal muscle histologic changes in MFM. As in patient muscle, there are increased levels of BAG3-interacting proteins, such as p62, heat shock protein B8, and αB-crystallin. The KI/KO mP215L strain is the first murine model of BAG3 myopathy that resembles the human skeletal muscle pathologic features. The results support the hypothesis that the pathologic development of MFM requires a significant decrease in BAG3 protein level and not only a gain of function caused by the dominant missense mutation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Miopatías Estructurales Congénitas/patología , Animales , Cardiomiopatías/genética , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Genes Dominantes , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/genética , Fenotipo
8.
FASEB J ; 32(7): 3518-3535, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29405094

RESUMEN

BCL2-associated athanogene (BAG)-3 is viewed as a platform that would physically and functionally link distinct classes of molecular chaperones of the heat shock protein (HSP) family for the stabilization and clearance of damaged proteins. In this study, we show that HSPB8, a member of the small heat shock protein subfamily, cooperates with BAG3 to coordinate the sequestration of harmful proteins and the cellular adaptive response upon proteasome inhibition. Silencing of HSPB8, like depletion of BAG3, inhibited targeting of ubiquitinated proteins to the juxtanuclear aggresome, a mammalian system of spatial quality control. However, aggresome targeting was restored in BAG3-depleted cells by a mutant BAG3 defective in HSPB8 binding, uncoupling HSPB8 function from its binding to BAG3. Depletion of HSPB8 impaired formation of ubiquitinated microaggregates in an early phase and interfered with accurate modifications of the stress sensor p62/sequestosome (SQSTM)-1. This impairment correlated with decreased coupling of BAG3 to p62/SQSTM1 in response to stress, hindering Kelch-like ECH-associated protein (KEAP)-1 sequestration and stabilization of nuclear factor E2-related factor (Nrf)-2, an important arm of the antioxidant defense. Notably, the myopathy-associated mutation of BAG3 (P209L), which lies within the HSPB8-binding motif, deregulated the association between BAG3 and p62/SQSTM1 and the KEAP1-Nrf2 signaling axis. Together, our findings support a so-far-unrecognized role for the HSPB8-BAG3 connection in mounting of an efficient stress response, which may be involved in BAG3-related human diseases.-Guilbert, S. M., Lambert, H., Rodrigue, M.-A., Fuchs, M., Landry, J., Lavoie, J. N. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Choque Térmico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Sitios de Unión , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Chaperonas Moleculares , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteína Sequestosoma-1/metabolismo
9.
FASEB J ; 31(8): 3555-3573, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28442548

RESUMEN

Keratins (Ks) are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a differentiation-regulated manner. Hepatocyte IFs are made only of K8/K18 pairs, which means that a K8 loss in K8-null mice leads to degradation of K18. Functionally, there is accumulating evidence that IFs contribute to signaling platforms. Here, we investigate the role of K8/K18 IFs in the regulation of insulin receptor (IR) signaling and trafficking in hepatocytes. We find that the IR substrate 1 (IRS1)/PI3K/Akt signaling cascade-downstream of IR-displays prolonged activation in K8-null compared with wild-type hepatocytes. Assessment of the Akt/mammalian target of rapamycin complex 1-mediated feedback loop to IRS1/PI3K, in the absence or presence of drug inhibitors, further supports a preferential K8/K18 IF intervention at the surface membrane. In K8-null hepatocytes, IR trafficking vesicles that are labeled by Rab5/EEA1/phosphatidylinositol 3-phosphate accumulate at a juxtanuclear region via a microtubule-dependent process. Moreover, interference with phosphatidylinositol 4,5-biphosphate signaling aggravates IR/Rab5 accumulation. Overall, results uncover K8/K18 IF regulation of IR signaling via a concerted modulation of phosphatidylinositol 4,5-biphosphate-dependent IRS1/PI3K/Akt signaling and Rab5/phosphatidylinositol 3-phosphate/microtubule trafficking in hepatocytes.-Roux, A., Loranger, A., Lavoie, J. N., Marceau, N. Keratin 8/18 regulation of insulin receptor signaling and trafficking in hepatocytes through a concerted phosphoinositide-dependent Akt and Rab5 modulation.


Asunto(s)
Hepatocitos/fisiología , Queratina-18/metabolismo , Queratina-8/metabolismo , Fosfatidilinositoles/metabolismo , Receptor de Insulina/fisiología , Transducción de Señal/fisiología , Animales , Queratina-18/genética , Queratina-8/genética , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
10.
Cell Stress Chaperones ; 22(4): 553-567, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28275944

RESUMEN

The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Citocinesis , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/análisis , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/análisis , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Reguladoras de la Apoptosis/análisis , División Celular , Técnicas de Silenciamiento del Gen , Células HeLa , Proteínas de Choque Térmico/análisis , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/genética
11.
J Vis Exp ; (115)2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27685647

RESUMEN

Cellular processes such as mitosis and cell differentiation are governed by changes in cell shape that largely rely on proper remodeling of the cell cytoskeletal structures. This involves the assembly-disassembly of higher-order macromolecular structures at a given time and location, a process that is particularly sensitive to perturbations caused by overexpression of proteins. Methods that can preserve protein homeostasis and maintain near-to-normal cellular morphology are highly desirable to determine the functional contribution of a protein of interest in a wide range of cellular processes. Transient depletion-rescue experiments based on RNA interference are powerful approaches to analyze protein functions and structural requirements. However, reintroduction of the target protein with minimum deviation from its physiological level is a real challenge. Here we describe a method termed adenofection that was developed to study the role of molecular chaperones and partners in the normal operation of dividing cells and the relationship with actin remodeling. HeLa cells were depleted of BAG3 with siRNA duplexes targeting the 3'UTR region. GFP-tagged BAG3 proteins were reintroduced simultaneously into >75% of the cells using recombinant adenoviruses coupled to transfection reagents. Adenofection enabled to express BAG3-GFP proteins at near physiological levels in HeLa cells depleted of BAG3, in the absence of a stress response. No effect was observed on the levels of endogenous Heat Shock Protein chaperones, the main stress-inducible regulators of protein homeostasis. Furthermore, by adding baculoviruses driving the expression of fluorescent markers at the time of cell transduction-transfection, we could dissect mitotic cell dynamics by time-lapse microscopic analyses with minimum perturbation of normal mitotic progression. Adenofection is applicable also to hard-to-infect mouse cells, and suitable for functional analyses of myoblast differentiation into myotubes. Thus adenofection provides a versatile method to perform structure-function analyses of proteins involved in sensitive biological processes that rely on higher-order cytoskeletal dynamics.


Asunto(s)
Adenoviridae/genética , Chaperonas Moleculares/fisiología , Transfección/métodos , Animales , Citoesqueleto/genética , Citoesqueleto/fisiología , Células HeLa , Humanos , Ratones , Chaperonas Moleculares/genética , Interferencia de ARN
12.
PLoS Genet ; 11(10): e1005582, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26496431

RESUMEN

The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.


Asunto(s)
Citoesqueleto de Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Choque Térmico/genética , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Segregación Cromosómica/genética , Concanavalina A/administración & dosificación , Células HeLa , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Humanos , Células MCF-7 , Mitosis/genética , Chaperonas Moleculares , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , ARN Interferente Pequeño , Proteína Sequestosoma-1
13.
J Biol Chem ; 289(4): 2230-49, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24302731

RESUMEN

It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Familia-src Quinasas/metabolismo , Citoesqueleto de Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Línea Celular Transformada , Dinaminas , GTP Fosfohidrolasas/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Transducción de Señal/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas de Unión al GTP rab/genética , Familia-src Quinasas/genética
14.
Apoptosis ; 17(8): 880-94, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22585043

RESUMEN

FasR stimulation by Fas ligand leads to rapid formation of FasR microaggregates, which become signaling protein oligomerization transduction structures (SPOTS), through interactions with actin and ezrin, a structural step that triggers death-inducing signaling complex formation, in association with procaspase-8 activation. In some cells, designated as type I, caspase 8 directly activates effector caspases, whereas in others, known as type II, the caspase-mediated death signaling is amplified through mitochondria. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatocyte IFs are made solely of keratins 8/18 (K8/K18), the hallmark of all simple epithelia. We have shown recently that in comparison to type II wild-type (WT) mouse hepatocytes, the absence of K8/K18 IFs in K8-null hepatocytes leads to more efficient FasR-mediated apoptosis, in link with a type II/type I-like switch in FasR-death signaling. Here, we demonstrate that the apoptotic process occurring in type I-like K8-null hepatocytes is associated with accelerated SPOTS elaboration at surface membrane, along with manifestation of FasR cap formation and internalization. In addition, the lipid raft organization is altered in K8-null hepatocytes. While lipid raft inhibition impairs SPOTS formation in both WT and K8-null hepatocytes, the absence of K8/K18 IFs in the latter sensitizes SPOTS to actin de-polymerization, and perturbs ezrin compartmentalization. Overall, the results indicate that the K8/K18 IF loss in hepatocytes alters the initial FasR activation steps through perturbation of ezrin/actin interplay and lipid raft organization, which leads to a type II/type I switch in FasR-death signaling.


Asunto(s)
Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Hepatocitos/metabolismo , Filamentos Intermedios/metabolismo , Queratina-8/deficiencia , Microdominios de Membrana/metabolismo , Receptor fas/metabolismo , Animales , Apoptosis , Caveolina 1/metabolismo , Células Cultivadas , Citocalasina D/farmacología , Citoesqueleto/metabolismo , Difusión , Hepatocitos/efectos de los fármacos , Hepatocitos/ultraestructura , Queratina-18/metabolismo , Queratina-8/genética , Proteínas de la Membrana/metabolismo , Ratones , Multimerización de Proteína/efectos de los fármacos , Transducción de Señal
15.
Cell Signal ; 22(11): 1604-14, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20417707

RESUMEN

Evidence has accumulated that there are different modes of regulated cell death, which share overlapping signaling pathways. Cytoskeletal-dependent inter-organellar communication as a result of protein and lipid trafficking in and out of organelles has emerged as a common, key issue in the regulation of cell death modalities. The movement of proteins and lipids between cell compartments is believed to relay death signals in part through modifications of organelles dynamics. Little is known, however, regarding how trafficking is integrated within stress signaling pathways directing organelle-specific remodeling events. In this review, we discuss emerging evidence supporting a role for regulated changes in actin dynamics and intracellular membrane flow. Based on recent findings using the adenovirus E4orf4 death factor as a probing tool to tackle the mechanistic underpinnings that control alternative modes of cell death, we propose the existence of multifunctional platforms at the endosome-Golgi interface regulated by SFK-signaling. These endosomal platforms could be mobilized during cell activation processes to reorganize cellular membranes and promote inter-organelle signaling.


Asunto(s)
Actinas/metabolismo , Adenoviridae/metabolismo , Proteínas Virales/metabolismo , Familia-src Quinasas/metabolismo , Apoptosis , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Mitocondrias/metabolismo , Transducción de Señal
16.
J Proteome Res ; 9(2): 708-17, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19947650

RESUMEN

A role for Src Family Kinases (SFKs) in the dynamics of endocytic and secretory pathways has previously been reported. Identification of low-abundance compartmentalized complexes still remains challenging, highlighting the need for novel tools. Here we describe analysis of SFK-signaling complexes of hepatic Golgi/endosomes (G/E) fractions by sequential affinity enrichment of proteins. Mouse G/E permeabilized membranes were first validated in terms of electron microscopy, 1-D electrophoresis (1-DE), insulin-mediated endocytosis and protein content. With the use of quantitative N-terminal labeling of tryptic peptides (iTRAQ), 1-DE and IEF tryptic peptides separation methods, a total of 666 proteins were identified, including the SFK Lyn. Following insulin injection, a series of proteins were recognized by an anti-phosphotyrosine antibody (alpha P42-2) raised against the residue most frequently phosphorylated by SFK on the adenoviral protein E4orf4 and that cross-reacts with endosomal SFK targets. By using affinity chromatography coupled with mass spectrometry, we identified 16 proteins classified as (1) recycling receptors, (2) vesicular trafficking proteins, (3) actin network proteins, (4) metabolism proteins, or (5) signaling proteins. One of these proteins, low density lipoprotein-related protein 1 (LRP1), which is a known SFK substrate, was found to associate with the internalized insulin receptor (IR), suggesting the presence of a co-internalization process. The identification of these proteomes should, thus, contribute to a better understanding of the molecular mechanisms that regulate trafficking events and insulin clearance.


Asunto(s)
Endosomas/metabolismo , Aparato de Golgi/metabolismo , Fosfotirosina/inmunología , Proteoma , Receptor de Insulina/metabolismo , Receptores de LDL/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Familia-src Quinasas/metabolismo , Animales , Femenino , Focalización Isoeléctrica , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente
17.
Mol Biol Cell ; 20(18): 4091-106, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19641023

RESUMEN

Actin dynamics and membrane trafficking influence cell commitment to programmed cell death through largely undefined mechanisms. To investigate how actin and recycling endosome (RE) trafficking can engage death signaling, we studied the death program induced by the adenovirus early region 4 open reading frame 4 (E4orf4) protein as a model. We found that in the early stages of E4orf4 expression, Src-family kinases (SFKs), Cdc42, and actin perturbed the organization of the endocytic recycling compartment and promoted the transport of REs to the Golgi apparatus, while inhibiting recycling of protein cargos to the plasma membrane. The resulting changes in Golgi membrane dynamics that relied on actin-regulated Rab11a membrane trafficking triggered scattering of Golgi membranes and contributed to the progression of cell death. A similar mobilization of RE traffic mediated by SFKs, Cdc42 and Rab11a also contributed to Golgi fragmentation and to cell death progression in response to staurosporine, in a caspase-independent manner. Collectively, these novel findings suggest that diversion of RE trafficking to the Golgi complex through a pathway involving SFKs, Cdc42, and Rab11a plays a general role in death signaling by mediating regulated changes in Golgi dynamics.


Asunto(s)
Endocitosis , Endosomas/enzimología , Aparato de Golgi/enzimología , Membranas Intracelulares/enzimología , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Familia-src Quinasas/metabolismo , Actinas/metabolismo , Transporte Biológico/efectos de los fármacos , Caspasas/metabolismo , Compartimento Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Humanos , Membranas Intracelulares/efectos de los fármacos , Modelos Biológicos , Transducción de Señal/efectos de los fármacos , Estaurosporina/farmacología , Proteínas Virales/metabolismo
18.
J Biol Chem ; 283(49): 34352-64, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18818208

RESUMEN

The adenovirus type 2 Early Region 4 ORF4 (E4orf4) protein induces a caspase-independent death program in tumor cells involving changes in actin dynamics that are functionally linked to cell killing. Because an increase in myosin II-based contractility is needed for the death of E4orf4-expressing cells, we have proposed that alteration of cytoskeletal tension is part of the signals engaging the death pathway. Yet the mechanisms involved are poorly defined. Herein, we show that the Jun N-terminal kinase JNK is activated in part through a pathway involving Src, Rho, and ROCK (Rho kinase) and contributes to dysregulate adhesion dynamics and to kill cells in response to E4orf4. JNK supports the formation of atypically robust focal adhesions, which are bound to the assembly of the peculiar actomyosin network typifying E4orf4-induced cell death and which are required for driving nuclear condensation. Remarkably, the dramatic enlargement of focal adhesions, actin remodeling, and cell death all rely on paxillin phosphorylation at Ser-178, which is induced by E4orf4 in a JNK-dependent way. Furthermore, we found that Ser-178-paxillin phosphorylation is necessary to decrease adhesion turnover and to enhance the time residency of paxillin at focal adhesions, promoting its recruitment from an internal pool. Our results indicate that perturbation of tensional homeostasis by E4orf4 involves JNK-regulated changes in paxillin adhesion dynamics that are required to engage the death pathway. Moreover, our findings support a role for JNK-mediated paxillin phosphorylation in adhesion growth and stabilization during tension signaling.


Asunto(s)
MAP Quinasa Quinasa 4/metabolismo , Paxillin/química , Proteínas Virales/química , Actinas/metabolismo , Adenoviridae/metabolismo , Adhesión Celular , Muerte Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Vectores Genéticos , Homeostasis , Humanos , Modelos Biológicos , Fosforilación , Familia-src Quinasas/metabolismo
19.
Bull Cancer ; 93(9): 921-30, 2006 Sep.
Artículo en Francés | MEDLINE | ID: mdl-16980235

RESUMEN

Evidence indicates that a limited set of common genetic alterations is responsible for tumor progression and cancer cell resistance to current therapies. The ability of tumor cells to escape apoptosis induction, which normally occurs in response to deregulated oncogenic signaling, is a critical one. Recent work supports the existence of alternative physiological death programs, which seem effective in cancer cells bearing multiple defects in apoptotic regulators. The goal of this review is to highlight the importance of these alternative death programs and to present the adenovirus E4orf4 protein (Early region 4 open reading frame 4), as a unique molecular tool to identify key regulators of these pathways in cancer cells. Evidence indicates that E4orf4 hijacks the oncogenic functions of Src tyrosine kinases to activate a cell death program in cancer cells, which does not rely on the classical caspase pathways and bypasses Bcl-2. Recent findings support a critical role for endosomes-associated actin dynamics downstream of E4orf4-Src signaling, in the regulation of this cell death pathway.


Asunto(s)
Muerte Celular/fisiología , Neoplasias/patología , Proteínas Virales/fisiología , Actinas/fisiología , Adenoviridae/fisiología , Apoptosis/genética , Apoptosis/fisiología , Caspasas/fisiología , Muerte Celular/genética , División Celular/genética , División Celular/fisiología , Transformación Celular Viral/fisiología , Progresión de la Enfermedad , Activación Enzimática , Neoplasias/fisiopatología , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Factor de Transcripción STAT3 , Transducción de Señal/fisiología , Proteínas Virales/genética , Replicación Viral , Proteína X Asociada a bcl-2 , Proteínas de Unión al GTP rho/metabolismo , Familia-src Quinasas/fisiología
20.
Mol Biol Cell ; 17(7): 3329-44, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16687574

RESUMEN

The adenovirus early region 4 ORF4 protein (E4orf4) triggers a novel death program that bypasses classical apoptotic pathways in human cancer cells. Deregulation of the cell cytoskeleton is a hallmark of E4orf4 killing that relies on Src family kinases and E4orf4 phosphorylation. However, the cytoskeletal targets of E4orf4 and their role in the death process are unknown. Here, we show that E4orf4 translocates to cytoplasmic sites and triggers the assembly of a peculiar juxtanuclear actin-myosin network that drives polarized blebbing and nuclear shrinkage. We found that E4orf4 activates the myosin II motor and triggers de novo actin polymerization in the perinuclear region, promoting endosomes recruitment to the sites of actin assembly. E4orf4-induced actin dynamics requires interaction with Src family kinases and involves a spatial regulation of the Rho GTPases pathways Cdc42/N-Wasp, RhoA/Rho kinase, and Rac1, which make distinct contributions. Remarkably, activation of the Rho GTPases is required for induction of apoptotic-like cell death. Furthermore, inhibition of actin dynamics per se dramatically impairs E4orf4 killing. This work provides strong support for a causal role for endosome-associated actin dynamics in E4orf4 killing and in the regulation of cancer cell fate.


Asunto(s)
Actinas/metabolismo , Apoptosis , Endosomas/metabolismo , Neoplasias/metabolismo , Proteínas Virales/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Actinas/antagonistas & inhibidores , Animales , Apoptosis/genética , Núcleo Celular/metabolismo , Activación Enzimática , Humanos , Miosina Tipo II/metabolismo , Neoplasias/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Vesículas Transportadoras/enzimología , Vesículas Transportadoras/fisiología , Células Tumorales Cultivadas , Proteínas Virales/genética , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...