Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765704

RESUMEN

This study comprehensively analyzed green nanomagnetic iron oxide particles (GNMIOPs) synthesized using a green method, investigating their size, shape, crystallinity, aggregation, phase portions, stability, and magnetism. The influence of pH and washing solvents on the magnetic properties of the nanoparticles and their incorporation into PCL membranes was examined for biomedical applications. Polyphenols were utilized at different pH values (1.2, 7.5, and 12.5), with washing being performed using either ethanol or water. Characterization techniques, including XRD, SEM, TEM, FTIR, and VSM, were employed, along with evaluations of stability, magnetic properties, and antioxidant activity. The findings indicate that both pH levels and the washing process exert a substantial influence on several properties of NMIOPs. The particle sizes ranged from 6.6 to 23.5 nm, with the smallest size being observed for GNMIOPs prepared at pH 12.5. Higher pH values led to increased crystallinity, cubic Fe3O4 fractions, and reduced crystalline anisotropy. SEM and TEM analyses showed pH-dependent morphological variations, with increased aggregation being observed at lower pH values. GNMIOPs displayed exceptional magnetic behavior, with the highest saturation magnetization being observed in GNMIOPs prepared at pH 7.5 and 12.5 and subsequently washed with ethanol. The zeta potential measurements indicated a stability range for GNMIOPs spanning from -31.8 to -41.6 mV, while GNMIOPs synthesized under high-pH conditions demonstrated noteworthy antioxidant activity. Furthermore, it was explored how pH and washing solvent affected the morphology, roughness, and magnetic properties of GNMIOP-infused nanofiber membranes. SEM showed irregularities and roughness due to GNMIOPs, varying with pH and washing solvent. TEM confirmed better dispersion with ethanol washing. The magnetic response was stronger with ethanol-washed GNMIOPs, highlighting the influence of pH and washing solvent on membrane characteristics.

2.
Nanomaterials (Basel) ; 13(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570560

RESUMEN

This comprehensive study investigates the properties of chemical nanomagnetic iron oxide particles (CNMIOPs) synthesized through a chemical method. The primary objective is to examine how pH levels and washing solvents affect the magnetism properties of these nanoparticles. Three different pH levels (1.2, 7.5, and 12.5) using NaOH and two washing solvents (ethanol and water) are employed. The characterization techniques include FTIR, SEM, TEM, XRD, ZSP, and VSM. Furthermore, the study incorporates two specific pH- and solvent-dependent CNMIOPs into PCL electrospun materials to analyze their performance in a targeted application. The results show that pH and the washing process significantly affect the CNMIOPs' properties. Higher pH levels result in smaller particles with higher crystallinity and reduce crystalline anisotropy. SEM and TEM analysis confirm different morphologies, including cubic, spherical, and elongated shapes. Ethanol-washed CNMIOPs exhibit superior magnetic behavior, with the highest magnetization saturation at pH 12.5 (Ms = 58.3 emu/g). The stability of the CNMIOPs ranges from -14.7 to -23.8 mV, and higher pH levels exhibit promising antioxidant activity. Furthermore, the study explores the effects of pH and washing solvents on CNMIOP-infused nanofiber membranes, with better dispersion observed with ethanol washing. Overall, this research provides valuable insights into the properties and behavior of CNMIOPs under varying pH and washing conditions.

3.
Nat Commun ; 9(1): 2680, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992958

RESUMEN

The ideal magnetocaloric material would lay at the borderline of a first-order and a second-order phase transition. Hence, it is crucial to unambiguously determine the order of phase transitions for both applied magnetocaloric research as well as the characterization of other phase change materials. Although Ehrenfest provided a conceptually simple definition of the order of a phase transition, the known techniques for its determination based on magnetic measurements either provide erroneous results for specific cases or require extensive data analysis that depends on subjective appreciations of qualitative features of the data. Here we report a quantitative fingerprint of first-order thermomagnetic phase transitions: the exponent n from field dependence of magnetic entropy change presents a maximum of n > 2 only for first-order thermomagnetic phase transitions. This model-independent parameter allows evaluating the order of phase transition without any subjective interpretations, as we show for different types of materials and for the Bean-Rodbell model.

4.
Langmuir ; 30(6): 1710-5, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24495102

RESUMEN

Vanadium dioxide is the most widely researched thermochromic material with a phase transition temperature (τ(c)) of around 68 °C, and its thermochromic performance can be enhanced by adding nanoporosity. Freeze-drying has been employed to fabricate nanostructures with different porosities from 16 to 45% by varying the prefreezing temperature and precursor concentration. The luminous transmittance (Tlum) and solar modulating ability (ΔTsol) are greatly enhanced as a result of increasing pore size and pore density. The freeze-dried sample with 7.5 mL of H2O2 precursor dip-coated at 300 mm/min gives the best combination of thermochromic properties (Tlum ≈ 50%, ΔTsol = 14.7%), which surpasses the best combined thermochromic performance reported to date that we are aware of (Tlum ≈ 41%, ΔTsol = 14.1%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA